М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nasib15
Nasib15
02.01.2021 02:10 •  Геометрия

У выражение с векторами:

FR−→−AK−→−+RK−→−+AF−→−2RK−→−−3KR−→− =



.

👇
Открыть все ответы
Ответ:
7Настася7
7Настася7
02.01.2021

П`ятикутник - це багатокутник, у якого п`ять кутів. П`ятикутники бувають правильними, неправильними, опуклими, увігнутими, зірчастими. Не існу диного обчислення площі п`ятикутників, але легко знайти площу правильного п`ятикутника. Ця стаття описує два основних обчислення площі правильного п`ятикутника.

Кроки

Частина 1 з 3: Основи

1

Правильні і неправильні п`ятикутники. Правильний п`ятикутник - це п`ятикутник, у якого всі сторони рівними в іншому випадку п`ятикутник називається неправильним.

Правильний п`ятикутник завжди буде опуклим (див. Нижче). Неправильний п`ятикутник може бути і опуклим, і увігнутим.

2

Опуклі і увігнуті п`ятикутники. Опуклий п`ятикутник не має вершин, спрямованих всередину фігури (іншими словами, не має внутрішніх кутів більше 180 градусів). Увігнутий п`ятикутник має вершину, спрямовану всередину фігури (іншими словами, має внутрішній кут більше 180 градусів).

3

Периметр п`ятикутника. Як і у випадку інших геометричних фігур, знайти периметр п`ятикутника легко складіть довжини всіх п`яти сторін.

4

Апофема правильного п`ятикутника. Апофема - відрізок, що з`єднує центр п`ятикутника і середину будь-який з його сторін.

5

Основні тригонометричні функції. Їх треба знати, оскільки площа п`ятикутника можна знайти за до його розбиття на прямокутні трикутники. Існують три основні тригонометричних функції: sin кута = протилежний катет / гіпотенуза- cos кута = прилежащий катет / гіпотенуза- tg кута = протилежний катет / прилежащий катет.

Частина 2 з 3: Обчислення площі п`ятикутника: геометрія

1

Розбийте п`ятикутник на п`ять рівнобедрених трикутників. Потім у кожному трикутнику опустіть висоту (з центру п`ятикутника). Ви отримаєте десять прямокутних трикутників. Запам`ятайте: кожен кут п`ятикутника дорівнює 108 градусам.

Наприклад, знайдіть площа правильного п`ятикутника зі стороною 6 см. Для початку розбийте його так, як показано на малюнку.

2

Знайдіть сторони рівнобедреного трикутника. Для цього розгляньте один з прямокутних трикутників.

У наведеному прикладі сторона п`ятикутника дорівнює 6 см. Отже, один катет прямокутного трикутника дорівнює 3 см (оскільки висота ділить сторону п`ятикутника навпіл). За до тригонометричних функцій можна обчислити інші сторони. Обчислення показані на малюнку.

3

Обчисліть площу прямокутного трикутника. Площа прямокутного трикутника обчислюється за формулою: А1 = ab / 2.

У наведеному вище прикладі підставте знайдені значення в цю формулу. Обчислення показані на малюнку.

4

Знайдіть площу п`ятикутника. Нагадаємо, що ви розбили п`ятикутник на десять прямокутних трикутників. Таким чином, загальна площа п`ятикутника в десять разів більше площі одного прямокутного трикутника: А = 10 * А1.

У наведеному вище прикладі площа п`ятикутника обчислюється таким чином: А = 10 * А1 = 10 * 3,0321 = 30,3210.

Частина 3 з 3: Обчислення площі п`ятикутника: формула

1

Формула для обчислення площі будь-якого правильного багатокутника: A = Pa / 2, де Р - периметр багатокутника, а - апофема багатокутника.

Наприклад, дано правильний п`ятикутник зі стороною 6 см. Знайдіть його площу.

2

Знайдіть периметр п`ятикутника. Для цього складіть довжини всіх його сторін.

У наведеному вище прикладі: Р = 6 + 6 + 6 + 6 + 6 = 30.

3

Знайдіть апофему п`ятикутника. Якщо ви знаєте сторону багатокутника, то його апофема обчислюється за формулою: а = s / 2tan (180 / n), де s - сторона багатокутника, n - кількість сторін багатокутника.

У наведеному вище прикладі обчислення апофеми показано на малюнку.

4

Обчисліть площу п`ятикутника. Для цього використовуйте основну формулу для обчислення площі п`ятикутника.

У наведеному вище прикладі: А = (30 * 2,0214) / 2 = 30,3210.

Поради

Якщо можливо, обчисліть площа п`ятикутника, використовуючи обидва описаних методу. Потім порівняйте результати, щоб підтвердити правильність відповіді.

4,4(44 оценок)
Ответ:
mihailova1999
mihailova1999
02.01.2021

7.(2б)

Найти угол между стороной AB и медианой BB₁ треугольника ABC :

A(3; 5; 0) , B(0 ; - 6; 0)  , C(3 ;1 ;0) .     AB₁=CB₁ = AC/2  =  2

∠ABB₁  -?

- - - - - - - - - - --

B₁ (3 ; 3; 0) _середина стороны AC    * * * (3+3) /2 ; (5+1)/2 ; (0+0)/2 * * *

BA { 3 ; 11 ; 0 }              * * * 3 -0 ; 5 -(-6) ; 0 -0 * * *

BB₁ { 3 ;  9 ; 0 }              * * * 3 -0 ; 3 -(-6) ; 0 -0  * * *

cos(∠(BA, BB₁) )  = BA*BB₁ / |BA|*|BB₁|  =

(3*3+11*9 +0*0)/√(3²+11²+0²)*√(3²+9²+0²) =108/√130*√90 =

108/ 30 √13 =3,6 / √13 .            

* * *  !  3,6 /√13 =(√3,6²) /√13 =√12,96 /√13  < 1   * * *  

     ∠(BA, BB₁) =arccos(3,6 /√13  )    

BA*BB₁ - скалярное произведение векторов  BA и BB₁

|BA| и |BB₁|  -  модули  векторов  BA и BB₁

- - - - - - - -

8.(2б)

B(2 ; - 1; - 1)  , A(2 ; 2 ; - 4) , C(3 ; - 1 ; -2) ,

BA { 0 ; 3 ; -3}  ;  BC { 1 ; 0 ; - 1}

cos(∠(BA, BC) )  = BA*BB / |BA|*|BC|  

BA*BC - скалярное произведение векторов  BA и BC

|BA| и |BC|  -  модули  векторов  BA и BC

* * * ∠(BA, BC) =  ∠B * * *

cos∠B = cos(∠(BA, BC) )= (0*1+3*0 + (-3)*(-1) )/√(0²+3²+(-3)² )*√(1²+0²+(-1)²) =

3/√18*√2  = 3/6 =1/2   ⇒    ∠B =60 °

Внешний  угол при вершине B будет  180° - ∠B = 180° - 60 ° = 120°

- - - - - - - -

9.(2б)  Центр сферы A(4 ; -4 ; 2) ,  O(0 ; 0 ;0) ∈ поверхности сферы

* * *(x - x₀)²+(y - y₀)²+ (z - z₀)² = R²  уравнение сферы радиусом R , центр которой в точке  A( x₀; y₀ ; z₀)  * * *

(x - 4)²+(y +4)²+ (z -2)² = R²    Нужно найти  R

Т.к. O(0 ; 0 ;0)  ∈ поверхности сферы ,то

(0 - 4)²+(0 +4)²+ (0 -2)² = R² ⇔  R² =36      

следовательно

(x - 4)²+(y +4)²+ (z -2)² =  36                * * * R² =6² * * *


решите одну из этих задач , если получится , и остальные . Заранее благодарю.
решите одну из этих задач , если получится , и остальные . Заранее благодарю.
4,4(32 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ