Указать, какие из перечисленных утверждений верны.
1.
2) Медиана проходит через середину стороны треугольника.
3) Медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
5) Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 к 1, считая от вершины.
2.
1) Высота всегда образует с прямой, содержащей одну из сторон треугольника, равные углы.
2) В прямоугольном треугольнике высота может совпадать с одной из его сторон.
5) Высота может лежать и вне треугольника.
3.
2) Биссектриса всегда делит пополам один из углов треугольника.
3) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
4) Точка пересечения биссектрис произвольного треугольника - центр окружности, вписанной в этот треугольник.
4.
1) Биссектриса всегда делит пополам один из углов треугольника.
3) Точка пересечения биссектрис всегда лежит внутри треугольника.
4) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
Відповідь:
3 см
Пояснення:
Відомо, що коло, вписане в трикутник, точками дотику до сторін відділяє рівні відрізки зі сторони кожної вершини.
Також відомо, що висоти - радіуси, проведені із центра такого кола в прямокутному трикутнику до катетів утворюють з відрізками від точок дотику до вершини прямого кута квадрат зі стороною, рівною радіусу вписаного кола.
Згідно з умовою, позначимо AF як 2x, FB як 3x, тоді
r=9-2x
За теоремою Піфагора складемо рівняння:
9²+ (9-2х+3х)²=(2х+3х)²
81+(9+х)²=25х²
81+81+18х+х²-25х²=0
24х²-18х-162=0
4х²-3х-27=0
Дискрімінант: Д=9+4*4*27=441=21²
х₁=(3+21)/8=3 см
х₂=(3-21)/8=-2.25 см (не підходить).
Тоді r=9-2·3=3 см