В основаниии прямоугольного паралелепипеда лежит прямоугольник.Диагональ делит прямоугольник на два прямоугольных треугольника и диагональ является гипотенузой треугольника, по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) на ходим гипотенузу: гипотенуза^2 = 2^2 + 3^2
гипотенуза = square 13
теперь представляем диагональ в прямоугольном параллелепипеде - это получается прямоугольный треугольник. Один катет в этом треугольнике одновременно является гипотенузой из предыдущего пункта решения, равен он square 13, диагональ параллелепипеда является гипотенузой треугольника, а второй катет надо найти по теореме пифагора:square38^2 = (square 13)^2 + катет^2
катет =5
Площадь поверхности состоит из двух площадей оснований и 4 площадей боковых поверхностей.
Площадь основания = 2*3 = 6
Площадь одной боковой поверхности = 2*5 = 10
Площадь второй боковой поверхности = 3*5 = 15
Общая площадь = 2(5+12+18)=70
ответ:70 см^2
Пусть тетраэдр ABCD, длина любого ребра а.
Возможны два случая.
1. Плоскость проходит через середину высоты DE параллельно плоскости АВС. В этом случае вершина D находится с одной стороны плоскости, а вершины А, В, С - с другой. То есть высота тетраэдра DE равна 12. Как связаны длина ребра и высота тетраэдра, я выводить не буду, я это тут делал раз 100.
DE = а√(2/3)
откуда а = 12√(3/2) = 6√6;
2. Противоположные (скрещивающиеся) ребра тетраэдра (то есть не имеющие общих вершин) взаимно перпендикулярны. Можно провести плоскость, параллельную двум таким ребрам, например AC и DB. Чтобы вершины A,C, B и D находились на равном расстоянии от этой плоскости (A и C - с одной стороны, B и D - с другой) плоскость надо провести через середины ребер AD, CD, AB и BC (кстати, в сечении получится квадрат).
Расстояние между скрещивающимися ребрами тетраэдра равно a√2/2 (это отрезок, соединяющий середины АС и DB, он перпендикулярен построенной плоскости и делится ею пополам - докажите! это очень просто). Отсюда 12 = a/√2; a = 12√2;