Дан ромб АВСД. У ромба все стороны равны. И равны Р/4=80/4=20.Диагонали пусть будут равны АС=3х и ВД=4х.
Диагонали ромба пересекаются под прямым углом, делятся пополам точкой пересечения О и соответственно образуют 4 равных прямоугольных треугольника. Рассмотрим один из них АОВ. Применим теорему Пифагора
АВ²=АО²+ВО²
20²=(1,5х)²+(2х)²
400=2,25х²+4х²
6,25х²=400
х=20/2,5
х=8
Значит катеты равны
АО=1,5х=12 см
ВО=2х=16 см
Найдем острые углы через тангенс
tg<A=BO/AO=16/12=4/3 (53°)
tg<B=AO/BO=12/16=3/4 (37°)
острые углы треугольника равны половине углов ромба, поэтому углы ромба равны 106° и 74°
Диагонали ромба равны 3х=24 см и 4х=32 см
А1В1 : АВ = В1С1 : ВС =А1С1 : АС = 1 : 2
Поскольку три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то они подобны. Для подобного треугольника А1В1С1 соотношение сторон будет таким же: 7:8:11. Пусть они будут 7х, 8х и 11х. Зная периметр, запишем:
7х+8х+11х=52
26х=52
х=2
А1В1=7*2=14 см, В1С1=8*2=16 см, А1С1=11*2=22 см