Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
1)проведем радиус=оа,ов,ос 2)рассмотрим треуг. АОД,и треуг. ВОС. треуг.АОД т.к. ОА=ОД=радиусу,треуг. ВОС т.к. ОВ=ОС=радиусу 3)треуг. АОД=треуг. ВОС(по 1 признаку равенства треуг.) т.к. ОА=ОС,ОВ=ОД угол АОД=углу ВОС(вертек.) 4)из равенства треуг. следует что АД=ВС, ОК и ОЛ-высота проведенная к сторонам следовательно ОК=ОЛ
вот точный ответ из моей головы