найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
Площадь параллелограмма равна произведению стороны и высоты, опущенной на эту сторону: S = a · h. У параллелограмма всего 4 высоты, которые попарно равны, поэтому нужно найти всего две разные высоты, опущенные на смежные стороны. Пусть ABCD - параллелограмм, у которого AB = CD = 2 см, BC = AD = 5 см. Из точки B опустим высоту BM на сторону AD и высоту BN на сторону CD. Найдём высоты: S = AD · h1; 5 = 5 · h1; h1 = 5 / 5 = 1 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна) S = CD · h2; 5 = 2 · h2; h2 = 5 / 2 = 2,5 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна) Найдём острый угол BAD параллелограмма. Он будет равен острому углу BCD. Поэтому достаточно найти только один угол. Рассмотрим ΔBAM. Он прямоугольный. Теперь ищем угол BAM: sin BAM = BM / AB, где BM - это высота h1 = 1 см; sin BAM = 1/2; угол BAM = arcsin(1/2) = 30 (градусов) = угол BAD параллелограмма = угол BCD.
найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
Площадь первого треугольника.
р = (36+24+42):2 = 51 см
h = 2:24*v51(51-24)(51-36)(51-42) = 35,9 см
S = 1/2 * 24 * 35,9 = 430,8 см^2
Площадь второго треугольника.
р = (8+12+14):2 = 17
h = 2:12*v17(17-12)(17-8)(17-14) = 7,9 см
S = 1/2 * 12*7,9 = 47,4 см^2
47,4 : 430,8 = 1 : 9
ответ: отношение площадей 2 треугольников 1 : 9.