1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!
Треугольник АВС, АВ=ВС=10, АС = 16, точка М - точка пересечения биссектрис треугольника - центр вписанной окружности, точка К - цент пересечения серединных перпендикуляров - центр описанной окружности, ВН - высота треугольника на АС, МН - радиус вписанной окружности, ВК - радиус описанной окружности и лежит за пределами треугольника, угол В - тупой,
АН=НС=16/2=8, ВН = корень (АВ в квадрате - АН в квадрате) = корень(100-64)=6
Полупериметр = (10+10+16)/2=18
Площадь треугольника = 1/2АС х ВН = 8 х 6=48
радиус вписанной = площадь/полупериметр = 48/18=2,67 = МН
радиус описанной = произведение сторон / 4 х площадь = 10 х 10 х 16 / 4 х 48= 8,33=ВК
расстояние между центрами = ВК - ВН+МН=8,33-6+2,67=5