Даны точки A (-10;3), B (2;9), C (3;7).
Запишите уравнение окружности, описанной около треугольника ABC.
Объяснение:
1)Найдем длины сторон ( вдруг треугольник равносторонний).
АВ=√( (2+10)²+(9-3)²)=√180 ,
ВС=√( (3-2)²+(7-9)²)=√(1+4)=√5 ,
АС=√( (3+10)²+(7-3)²)=√(169+16)=√185. Наибольшая сторона АС.
Проверим т. обратную теореме Пифагора :
АС²=(√185)²=185 и АВ²+ВС²=(√180)²+(√5)²=180+5=185. Ура
185=185⇒ΔАВС-прямоугольный , с гипотенузой АВ.
2)Центр О(х;у) описанной окружности около прямоугольного треугольника лежит на середине гипотенузы. Найдем координаты О
х(О)=( (х(А)+х(В) ):2 , х(О)=(-10+2):2=-4,
у(О)=( (у(А)+у(В) ):2 , у(О)=(3+9):2=6, центр О(-4;6).
Радиус окружности r=1/2*AB , r=1/2*√185.
3) (x +4)²+ (y – 6)² = (1/2*√185)² , (x +4)²+ (y – 6)² = 46,25
Теорема , обратная теореме Пифагора " Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный."
Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
ДАНО: АВСDEFA1B1C1D1E1F1 - правильная шестиугольная призма ; АВ = АА1 = 1
НАЙТИ: p ( A ; CB1 )
1) точка А и отрезок СВ1 лежат в плоскости треугольника АВ1С.
Все боковые грани правильной шестиугольной призмы равны.
Значит, АВ1 = В1С => ∆ АВ1С - равнобедренный
Найдём все стороны ∆ АВ1С
2) Рассмотрим ∆ АВ1В ( угол АВВ = 90° ):
По теореме Пифагора:
АВ1² =В² + ВВ1²
АВ1² = 1² + 1² = 2
АВ1 = √2
АВ1 = В1С = √2
3) В основании правильной шестиугольной призмы лежит правильный шестиугольник. Все углы правильного шестиугольника равны 120°.
Рассмотрим ∆ АВС ( АВ = ВС ):
По теореме косинусов:
АС² = АВ² + ВС² - 2 × АВ × ВС × cos ABC
AC² = 1² + 1² - 2 × 1 × 1 × cos 120°
AC² = 2 - 2 × ( - 1/2 ) = 2 + 1 = 3
AC = √3
4) B1B перпендикулярен ВН
ВН перпендикулярен АС
Значит, по теореме о трёх перпендикулярах В1Н перпендикулярен АС
Высота в равнобедренном ∆ АВ1С является и медианой и биссектрисой =>
АН = НС = 1/2 × АС = 1/2 × √3 = √3/2
5) Рассмотрим ∆ В1СН ( угол В1НС = 90° ):
По теореме Пифагора:
В1С² = В1Н² + НС²
В1Н² = ( √2 )² - ( √3/2 )² = 2 - 3/4 = 5/4
В1Н = √52
Опустим из точки А перпендикуляр АМ на отрезок В1С. Соответственно, АМ = р ( А ; В1С )
6) Найдём площадь ∆ В1АС:
S b1ac = 1/2 × AC × B1H
С другой стороны, S b1ac = 1/2 × B1C × AM
Приравняем площади и получим:
1/2 × АС × В1Н = 1/2 × В1С × АМ
АС × В1Н = В1С × АМ
АМ =
Значит, p ( А ; В1С ) = √30/4
ОТВЕТ: √30 / 4
сам подставишь, формулу скажу (двойка в знаменателе)
Объяснение:
площадь трапеции= (верхнее основание + нижнее основание)/2 * высоту трапеции