Правильный шестиугольник состоит из шести правильных треугольников со стороной, равной стороне шестиугольника. Обозначим её R. Угол меньшего сектора равен 60°, а площадь - одна шестая площади круга 60/360=1/6, Sсект=Sкр/6, Sкр=πR²=144π, Sсект=24π≈75.4 см² Площадь большей части круга (большого сегмента), отделённой стороной шестиугольника равна площади круга минус площадь малого сегмента, лежащего по другую его сторону. Sбс=Sкр-Sмс. Площадь малого сегмента равна площади известного сектора за вычетом площади правильного треугольника. Sмс=Sсект-Sтр Площ. прав. тр-ка Sтр=(R²√3)/4=(144√3)/4=36√3 Sмс=24π-36√3 Sбс=144π-24π+36√3=120π+36√3≈439.34 см²
Объяснение:
1) ∠BCA = 180° - 90° - 44° = 90° - 44° = 46°
∠DCE = 180° - 90° - 46° = 90° - 46° = 44°
∠BCD = 180° - 46° - 44° = 180° - 90° = 90° ⇒ BC⊥CD
ч. т. д.
2) ∠ACE = 180° - ( (180° - 90° - 55°) + (180° - 90° - 35°) ) = 180° - (35° + 55°) = 180° - 90° = 90°
3) sin∠BCH = BH / BC ; BC = BH / sin∠BCH ; BC = 4 / sin30° = 4 / 0,5 = 8
CH = √(BC² - BH²) = √(64 - 16) = √48 = 4√3
sin∠A = CH / AC ; AC = CH / sin∠A ; AC = 4√3 / sin30° = 8√3
AH = √(AC² - CH²) = √(192 - 48) = √144 = 12
ответ : 12 см.
7) Если BD - биссектриса ∠АВС, то ∠ABD = ∠DBC. ∠A = ∠C
∠BDA = 180° - ∠A - ∠ABD , ∠BDC = 180° - ∠C - ∠DBC.
Учитывая вышестоящие равенства, приходим к тому, что ∠BDA = ∠BDC ⇒ DB - биссектриса ∠АDС.
ч. т. д.