АВЕF - параллелограмм, так как ВЕ||АF, а АВ||ЕF. Значит АF=BE Периметр треугольника АОF равен АО+ОF+АF. Периметр треугольника ВОЕ равен ВО+ОЕ+ВЕ. Но ВЕ=АF (равные стороны параллелограмма АВЕF). ОЕ=ОF (так как треугольники АОF и СОЕ равны по двум углам и стороне между ними: АО=ОС - половины диагонали АС, <OAF=<OCE - внутренние накрест лежащие при параллельных ВС и АD и секущей АС, <AOF=<EOC - вертикальные). Значит разность периметров треугольников АОF и ВОЕ равна разности АО и ВО. АС+ВD=28см, значит АО+ВО=14см. Итак, АО+ВО=14 см (сумма половин диагоналей) АО-ВО=9. Сложим два уравнения и получим: 2АО=23. Значит АС=23см. Тогда ВD=5см. ответ: Диагонали параллелограмма равны АС=23см, ВD=5см.
В осевом сечении конуса - равнобедренный треугольник. Если даны 2 его стороны, то 12 см - это образующая, а 6 см - диаметр круга в основании конуса (две стороны по 6 см невозможны при третьей в 12 см). Радиус равен (1/2) диаметра - это 6/3 = 3 см. Если хорда стягивает дугу в 60°, то она равна радиусу. Тогда площадь сечения конуса плоскостью, которая проходит через вершину конуса и хорду "а" основания, стягивающую дугу в 60°, равна: S = (1/2)аН, где Н - высота треугольника в таком сечении. Н = √12²-3²) = √(144-9) = √135 см.
ответ: S = (1/2)3*√135 = (3/2)√135 ≈ 17,42843 см².
ответ: 5-6 сантиметров
Удачи ! !
Потому что медиана находится посередине треугольника и соединяет углы. Измеряет их высоту ( вроде того ).
в общем медиана не может быть 7 сантиметров так как две стороны треугольника 6 сантиметров и 8 сантиметров . Медиана должна быть меньше.