ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
Центр О окружности лежит на перпендикуляре, проведенном к середине отрезка MN. Обозначим: - точку касания окружностью стороны АВ точкой К, - точки пересечения осью окружности, перпендикулярной стороне АС, со стороной АС за точку Р, со стороной АВ за точку Е, - отрезок ОР за х, - отрезок РЕ за в. Так как окружность проходит через точки М и К, то МО и КО как радиусы равны. Из треугольников ОМР и ОКЕ составим уравнение: Возведём в квадрат и получаем квадратное уравнение: (1 - cos²A)*x²-2bcos²A*x+(13.5²-b²cos²А) = 0. Значение в находим: в = 22,5*tgA = 22.5*((1-cos²A)/cosA) = 5,809475. Подставив значения в и cosA, получаем: 0,0625х² - 10,892766х + 150,609375 = 0. Отсюда х₁ = 15,1421, х₂ = 159,142 - этот корень отбрасываем, так как точка К выходит за пределы треугольника АВС. Тогда радиус равен: R=√(13.5² + x²) = √(13.5²+15.1421²) = 20,286281.
Дано:
AB = AC
угол BAK = 35°
BC = 10 см
ВК = KC
угол ABC = 55°
Найти:
ВК, угол KAC, угол BAC, угол AKB, угол ACB
ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
ответ: 5 см, 35°, 70°, 90°, 55°.