Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
Обозначим стороны прямоугольника как 3х и 4х.
Сумма двух сторон равна половине периметра, то есть:
3х+4х = 42/2 = 21 см.
7х = 21 см.
х = 21/7 = 3 см.
ответ: меньшая сторона равна 3х = 3*3 = 9 см.
2) Обозначим острый угол параллелограмма α.
Тупой угол равен 180-α, половина его равна (180-α)/2 = 90-(α/2).
Угол между боковой стороной и высотой равен 90-α.
По заданию угол в 20° равен (90-(α/2)) - (90-α) = α - (α/2) = α/2.
ответ: α = 2*20 = 40°.