1) тк. треугольник прямоугольный, следовательно один его угол = 90°(прямой), и если бы остальные его углы были равны, то они были бы = 45°( сумма углов треуг. =180°)
2) дано: один из острых углов на 20° больше другого, следовательно можно составить уравнение :
x(первый острый угол) + x+20 (второй острый угол) = 90 ( тк прямой угол = 90, то сумма оставшихся острых = 90)
Решаем : x + x + 20 = 90
2x=90 - 20
2x=70
x = 70: 2
x = 35 ( 1-й острый угол) следовательно второй = 35+20= 55
Но тк в задаче указано найти меньший угол, то ответ будет : 35
9 см
Объяснение:
Задание
Хорда CD длиной 13 см пересекает хорду АВ в точке N, BN=3 см, AN=12 см, CN меньше ND. Найти длину ND
Решение
Теорема: хорды точкой пересечения делятся на отрезки, произведения которых равны.
BN · AN = 3 · 12 = 36
Пусть CN = х₁ , ND = х₂.
Составим систему уравнений и найдём ND:
х₁ + х₂ = 13 (1)
х₁ · х₂ = 36 (2)
Из уравнения (1) выразим х₂ и подставим в уравнение (2):
х₂ = 13 - х₁
х₁ · (13 - х₁) = 36
13х₁ - х₁² - 36 = 0
х₁² - 13х₁ + 36 = 0
х₁ = 6,5 - √(6,5²-36) = 6,5 - 2,5 = 4
СN = 4 см
х₂ = 6,5 + √(6,5²-36) = 6,5 + 2,5 = 9
ND = 9 см
ответ: ND = 9 см
ответ: Р=20см
Объяснение: воспользуемся теоремой косинусов, так как известна две стороны и угол между ними.
АС²=АВ²+ВС²-2×АВ×ВС×cosВ=
=25+64-2×5×8×cos60°=89-80×½=
=89-40=49
АС=√49=7см.
Теперь найдём периметр треугольника зная его стороны:
Р=АВ+АС+ВС=5+7+8=20см