речь идет о правильных (равносторонних и равноугольных) многоугольниках.
n означает число сторон.
а - сторона
Р - периметр
S - площадь
R - радиус описанной окружности, он же - расстояние от центра многоугольника до вершины.
r - радиус вписанной окружности, он же - расстояние от центра многоугольника до стороны.
Центр совпадает с точкой пересечения диагоналей.
1. Треугольник, задана площадь.
S = (1/2)a*a*sin(60) = a^2 *√3/4; a^2 = 48;
а = 4*√3; P = 12*√3; r = 2*S/P = 2; R = 2*r = 4;
2. Квадрат, задана сторона. (очень трудная задача)
P = 24; S = 36; r = 3; R = 3*√2;
3. Шестиугольник. Составлен из 6 равносторонних треугольников, поэтому R = a = 8; P = 48; r = R*sin(60) = 4*√3; S = (1/2)*P*r = 96*√3;
1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.