Сделаем рисунок к задаче.
Если соединить центр окружности с вершинами А, В и С, получим три равнобедренных треугольника.
1) прямоугольный с углом 90° при вершине О.
2) тупоугольный, углы при основании ВС равны по 15°. Центравльный угол равен
180-2*15=150°
2)тупоугольный АОВ
Центральный угол в треугольнике АОВ равен
360=90-150=120 °
АВ отрезком, равным расстоянию от О до АВ, делится пополам.
угол АВО в образовавшемся треугольнике при вершине В равен 30°
Радиус в этом треугольнике - его гипотенуза.
Гипотенуза вдвое больше катета, противолежащего углу 30°
Она равна 2*6=12 см
Радиус окружности равен 12 см.
Отношение площади основания к площади боковой поверхности равно косинусу угла наклона боковых граней (все грани равнонаклонены). Поэтому угол между апофемой и радиусом r вписанной в шестиугольник окружности равен 60 градусов. Поэтому апофема в 2 раза больше этого радиуса. А высота пирамиды равна H = r*tg(60).
Далее, сторона шестиугольника a (и радиус описанной окружности R заодно) равна
a = R = r/sin(60).
Обозначим угол наклона бокового ребра к основанию Ф. Тогда H/R = tg(Ф) = tg(60)*sin(60) = 3/2;
а нам надо вычислить 1/cos(Ф).
Легко сосчитать, что это корень(13)/2.
как считать? а вот проще всего так- берем прмоугольный треугольник с катетами 2 и 3, тогда гипотенуза корень(13), и 1/cos(Ф) = корень(13)/2;