1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
Сумму углов многоугольника определяют по формуле 180(n-2), где n - число сторон многоугольника. Приведу решение для варианта А в качестве примера. 1080°=180°(n-2) Разделив на 10° обе части ( можно и не делить) получим: 1080°=180°*n-360° 1440=180n n=8 ( сторон) Но есть другой при котором можно обойтись без данной формулы. Известно, что сумма ВСЕХ внешних углов многоугольника равна 360 градусов, сколько бы их ни было. Сумма внешних и внутренних углов кратна 180° ( один внутренний +один внешний составляют развернутый угол). 1080°+360°=1440 n=1440:180=8. С остальными фигурами Вы теперь без труда справитесь самостоятельно.
Объяснение: