М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MMPO
MMPO
13.02.2020 13:11 •  Геометрия

Обчислить площю рівнобедреного прямокктного трикутника ,катетии якого дорівнюють 1 1/8(одна ціла одна восьма).​

👇
Открыть все ответы
Ответ:
Johngear
Johngear
13.02.2020
1) В основании 6-угольной пирамиды лежит правильный 6-угольник, который состоит из 6 равносторонних треугольников.
Если сторона равна 4, то площадь
S(осн) = 6*a^2*√3/4 = 6*16*√3/4 = 24√3
Высота (она же медиана и биссектриса) одного треугольника h = a*√3/2 = 2√3
Эта высота h - один катет прямоугольного треугольника,
высота самой пирамиды H - второй катет, а апофема L - гипотенуза
L^2 = h^2 + H^2 = 4*3 + 2^2 = 12 + 4 = 16, L = 4, как и сказано в условии.
Это можно узнать и самому.
Площадь боковой поверхности
S(бок) = 6*a*L/2 = 3*4*4 = 48.
Площадь полной поверхности
S = S(осн) + S(бок) = 48 + 24√3
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*24√3*2 = 48/3*√3

2) Опять тоже самое. У правильной 4-угольной пирамиды в основании лежит квадрат.
И опять же, апофему можно вычислить, зная сторону основания и высоту.
S(осн) = 8^2 = 64
S(бок) = 4*a*L/2 = 2*8*5 = 80
Площадь полной поверхности
S = S(осн) + S(бок) = 64 + 80 = 144
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*64*3 = 64

3) Если площадь основания (квадрата) равна 36, то сторона а = 6
И опять же, апофему можно вычислить, зная сторону основания и высоту.
S(бок) = 4*a*L/2 = 2*6*6 = 72
Площадь полной поверхности
S = S(осн) + S(бок) = 36 + 72 = 108
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*36*3√3 = 36√3
4,5(7 оценок)
Ответ:
LoKotRon2017
LoKotRon2017
13.02.2020
Это решение дается мною второй раз в ответ      на вопросы разных пользователей.  
Решение:
 СD - отрезок касательной. 
Продолжение АВ = АD - секущая.
Рассмотрим рисунок, данный во вложении. Иногда рисунки пропадают, поэтому даю расположение обозначений, чтобы решение было понято и без рисунка.
На секущей АД расположение обозначений идет в порядке:
А-Е-В-D, А и В - на окружности.  СЕ- биссектриса,
АЕ=18, ВЕ=10
Угол, образованный касательной ДС к окружности и секущей ВС, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.
Следовательно, угол DАС=углу ВСD.
В треугольниках АDС и ВDС по два равных угла:
угол D - общий, угол ВСD =углу DАС, следовательно, они подобны. 
В подобных треугольниках соответственные стороны лежат против равных углов.
Найдем отношение сторон в треугольниках.
Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.
Следовательно, АС:ВС=18:10
Из подобия треугольников ВDС и СDА 
DС:ВD=18/10
DС=18*ВD/10
Пусть ВD - внешняя часть секущей АD - равна х
Тогда DС=18х/10
и АD=АЕ+ВЕ+х=28+х
Квадрат длины  отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть. 
 DС²=ВД*АD
(18х/10)²=х(28+х)
324х²:100=28х+х²
Домножив обе части уравнения на 100, получим:
324х²=2800х+100х²
224х²=2800х 
х=2800х:224х
х=12,5 см
DС=12,5*(18/10)=22,5 см
 --------------
[email protected]  

Биссектриса см треугольника авс делит сторону ав на отрезки ам=10 и мв=18.касательная к описанной ок
4,5(45 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ