Вычисли третью сторону треугольника, если две его стороны соответственно равны 3 см и 3 см, а угол между ними равен 120°. ответ: третья сторона равна −−−−−−−√ см.
Обозначим вершины параллелограмма АВСД. Соразмерно условию сделаем и рассмотрим рисунок. Противоположные стороны параллелограмма параллельны и равны. Высота параллелограмма перпендикулярна его противоположным сторонам. ВН ⊥ ВС и ⊥ АД ВМ ⊥ АВ и ⊥ прямой, содержащей СД ⇒ Угол АВМ - прямой, угол АВН=90º-60º, ⇒ угол ВАН=30º Противоположные углы параллелограмма равны. ⇒ угол ВСД= углу ВАД=30º Катет ВН в треугольнике АВН противолежит углу 30º. Гипотенуза в два раза больше катета, противолежащего углу 30º. АВ=ВН:sin (30º)=6: 0,5=12 см Катет ВМ в треугольнике ВСМ противолежит углу 30º. ВС=ВМ:sin (30º)=16: 0,5=32 см Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. S АВСД=6*32=192 см²илиS АВСД=16*12=192 см² или S АВСД=16*12=192 см²
Задача 1
Решение(согласно моему рисунку)
1) Проведем высоту ВН.
2) Рассмотрим четырехугольник АВНД
Он будет параллелограммом, т.к. АВ || СД (как основания), а АД || ВН (т.к. высоты к одной стороне)
Тогда, т.к. АВНД - параллелограмм, АВ=ДН=6 см., АД=ВН (по св-ву параллелограмма)
3) Рассмотрим прямоугольный треугольника ВНС
НС=10 - 6=4 см.
Угол С=60° (по условию)
Тогда угол НВС=90° - 60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. Гипотенуза ВС=8 см. (это и будет большая боковая сторона)
ВС²=ВН² + НС² (теорема Пифагора)
ВН²=64 - 16
ВН²=48
ВН=4√3
4) ВН=АД=4√3, тогда АД=4√3 (это и будет меньшая боковая сторона)
ответ: АД=4√3 см., ВС=8 см.