Среди полезных свойств трапеции есть и такое: Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности. Но не всегда нужное вспоминается во-время. Поэтому данное ниже решение - подробное. Рассмотрим рисунок трапеции АВСД, данный во вложении. Пусть К и Е - середины оснований, М и Н - середины боковых сторон. КЕ=12 МН=21 ∠ВАД=37° ∠СДА=53° Проведем из К к АД прямые КТ и КР параллельно боковым сторонам. Обозначим точки пересечения этих прямых и средней линии m и h По свойству параллельных прямых и секущей угол КТР= ∠ВАД=37° угол КРТ= ∠СДА=53° Сумма углов при основании ТР треугольника ТКР равна 37°+53°=90° ⇒ треугольник ТКР - прямоугольный. В нём ТЕ=АЕ-АТ ЕР=ЕД-РД, а так как АТ=ВК=КС=РД,то ТЕ=ЕР⇒ Е- середина ТР. ⇒ КЕ - медиана прямоугольного треугольника ТКР. Медиана прямоугольного трегольника, проведенная из вершины прямого угла, равна половине гипотенузы. ТЕ=КЕ=12. ТР=2*КЕ=24 Средняя линия mh треугольника ТКР равна половине ТР=12 Мm+hH=21-12=9 Мm+hH=BK+KC=BC ВС=9 АД=ТР+АТ+РД=ТР+ВС=9+24=33
Трапеция АВСД, уголА=53, уголД=37, МН-средняя линия трапеции=21, КТ - линия соединяющая середины ВС и АД (К на ВС)=12, продлеваем АВ и СД до пересечения их в точке О, треугольник АОД прямоугольный, уголО=180-уголА-уголД=180-53-37=90, проводим ОК, треугольник МОН прямоугольный, Е-точка пересечения МН и ОТ, ОЕ медиана треугольника МОН, в прямоугольном треугольнике медиана проведенная к гипотенузе=1/2 гипотенузы МН, ОЕ=МЕ=ЕН=1/2МН=21/2=10,5, КЕ=ЕТ=1/2КТ=12/2=6, ОЕ+ЕТ=ОТ, 10,5+6=16,5, треугольник АОД, ОТ-медиана=АТ=ТД=1/2АД, АД=2*ОТ=16,5*2=33, ВС=2*МН-АД=2*21-33=9
1. Дано: конус, h = 4, l = 5. V - ?
Решение: Сначала найдем радиус конуса через теорему Пифагора.
r = √5² - 4² = √25 - 16 = √9 = 3
V = 1 / 3 * π * r² * h = 1 / 3 * π * 9 * 4 = 1 / 3 * 36 * π = 12π
ответ: 12π см³
2. Дано: шар, V = 288 см³. d - ?
Решение: V=4 / 3 * π * R³
4 / 3 * π * R³ = 288π
r = 6 см
d = 12 cм
ответ: 12 см.