ВМ - медиана, следовательно, АМ=МС=2. Пусть точка пересечения окружности и ВС будет Н. ВН=СН. Угол ВНМ опирается на диаметр, следовательно, он прямой, и МН - высота треугольника ВМС. Но она же и медиана, т.к. ВН=СН, следовательно, треугольник ВМС - равнобедренный и ВМ=МС=2 Медиана треугольника АВС равна половине длины основания. Это один из признаков прямоугольного треугольника. Треугольник АВС прямоугольный, АС в нем - гипотенуза. Половина гипотенузы и медиана в нем является радиусами описанной окружности.
ВМ - медиана, следовательно, АМ=МС=2. Пусть точка пересечения окружности и ВС будет Н. ВН=СН. Угол ВНМ опирается на диаметр, следовательно, он прямой, и МН - высота треугольника ВМС. Но она же и медиана, т.к. ВН=СН, следовательно, треугольник ВМС - равнобедренный и ВМ=МС=2 Медиана треугольника АВС равна половине длины основания. Это один из признаков прямоугольного треугольника. Треугольник АВС прямоугольный, АС в нем - гипотенуза. Половина гипотенузы и медиана в нем является радиусами описанной окружности.
1) верно (в равнобедренном треугольнике, углы при основании равны)
2) нет
3) нет
4) Треугольник АВС делится биссектрисой пополам по этому отрезки равны
5) нет
6) там отрезка нет, но если его нарисовать, то верно
7) верно