Дано:
ABCD — трапеція, AD = BC
AH, BF = 1 cm — висоти трапеції
∠DAE = ∠CBF = 45°
Рішення:
1) ∠AED = ∠BFC = 90° (AE⊥DC, BF⊥DC);
2) AB = EF = 1 cm
3) ∠ADE = ∠BCF = 90−45 = 45° ⇒ ΔAED та ΔBFC — рівнобедрені ⇒
⇒ AE = BF = DE = CF = 1 cm
4) DC = 3·DE = 3·1 = 3 cm
5)
Відповідь: Площа трапеції дорівнює 2 cm².
1
Объяснение:
Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
$\displaystyle \angle$BOC = 90o + $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \angle$CAB = 90o + 30o = 120o.
Если R — искомый радиус, то
R = $\displaystyle {\frac{BC}{2\sin \angle BOC}}$ = $\displaystyle {\frac{\sqrt{3}}{2\sin 120^{\circ}}}$ = 1.
1) находим гипотенузу за теоремой пифагора, AB=25.
есть формула нахождения высоты за тремя сторонами: Ha=2корень(p(p-a)(p-b)(p-c))/a
p=(a+b+c)/2
подставив в эту формулу данные, находим высоту 12, она есть диаметром, значит r=12/2=6
длина окружности=2пr=12п
2)Sквадрата=a^2 a=корень из S
r вписанной окружности для квадрата = a/2
r=S^2/2 длина=2пr=S^2п
нарисуй квадрат и вписанный в него круг, точками касания будут середины сторон квадрата, берем те, которые на соседних сторонах и отмечаем эту дугу. угол, на которую она опирается - прямой. это видно по рисунку
90*=п/2 длина дуги=r*альфа=S^2/2*п/2=пS^2/4
площадь вне окружности можно найти отняв от площади квадрата площадь окружности. Sокружности=пr^2=(S^4п)/4 S вне окружности=S-(S^4п)/4
Объяснение:
.............................