В трапеции ABCD с основаниями BC=3 и AD>BC проведены высоты BE и CF. BE пересекает среднюю линию MN в точке K. Известно, что MK=1, DF=2,4, BF=5. Найдите площадь ABCD.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Значит один из катетов равен 7. А второй по Пифагору равен √(196-49) = √147см
.В равнобедренной трапеции с углом 150° боковая сторона равна 6см Площадь трапеции 66см2 Найти периметр трапеции
если 150 значит нижнии углы по 30 ..из этого высоты по половине 6 то есть по 3 части большего основания которые высоты отсекают= корень из(6^2-3^2)=корень из 25=5
теперь меньшее основание примем за Х тогда большее будет Х+10 из формулы площади трапеции...S=(a+b)/2*h следует
ответ: S = 10,4
Объяснение: