Высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на подобные треугольники.
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Пусть коэффициент данного по условию отношения высоты и медианы будет 1.
Тогда высота равна 40, медиана 41, гипотенуза 2*41=82
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Примем отрезок АН гипотенузы за х, НВ тогда 82-х
Квадрат высоты равен произведению отрезков АН и НВ
СН²=АН*НВ
1600=х(82-х)
х²-82х+1600=0
Решив квадратное уравнение, найдем два значения х=50 и х=32.
АН, как более короткий отрезок, равен 32,
НВ=50
Треугольники АНС, СНВ и АВС подобны .
И отношение их катетов одинаково.
Найдем отношение известных катетов в треугольниках АНС и СНВ. АН:СН=СН:НВ=4:5
АС:СВ=4/5
Но всегда простое решение - лучше сложного.
Вариант решения:
Основа решения:
Гипотенуза прямоугольного треугольника равна длине двух его медиан.
Между медианой и высотой образовался прямоугольный треугольник с гипотенузой СМ=41 и катетом СН=40.
По т.Пифагора отрезок гипотенузы НМ=9.
И тогда катет АН треугольника АНС относится к соответственному катету СН подобного ему треугольника СНВ как АН:НС=32:40=4/5
И вариант третий - если знать, что в треугольнике с гипотенузой 41, и катетом 40 второй катет равен 9 ( одна из троек Пифагора)- позволяет обойтись самым минимумом вычислений.
Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
\begin{gathered}l_1:\; \frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{-2}\; \; ,\; \; \vec{s}_1=(2,-1,-2)\; ,\; \; M_1(1,-2,0) l_2:\; \frac{x+1}{1}=\frac{y+11}{2}=\frac{z+6}{1}\; \; ,\; \; \vec{s}_2=(1,2,1 )\; \; ,\; \; M_2(-1,-11,-6)overline {M_2M_1}=(1+1,-2+11,0+6)=(2,9,6)(\overline {M_2M_1},\vec{s}_1,\vec{s}_2)= \left|\begin{array}{ccc}2&9&6\\2&-1&-2\\1&2&1\end{array}\right|= 2(-1+2)-9(2+2)+6(4+1)=0\end{gathered}
l
1
:
2
x−1
=
−1
y+2
=
−2
z
,
s
1
=(2,−1,−2),M
1
(1,−2,0)
l
2
:
1
x+1
=
2
y+11
=
1
z+6
,
s
2
=(1,2,1),M
2
(−1,−11,−6)
M
2
M
1
=(1+1,−2+11,0+6)=(2,9,6)
(
M
2
M
1
,
s
1
,
s
2
)=
∣
∣
∣
∣
∣
∣
∣
2
2
1
9
−1
2
6
−2
1
∣
∣
∣
∣
∣
∣
∣
=2(−1+2)−9(2+2)+6(4+1)=0