нижнее основание ad = 33верхнее bc = 15точка пересечения диагоналей ообозначим угол oad = x, с учётом свойст биссектрисы и накрест лежащих углов этому же иксу равны и оав, и овс, и всо.треугольник авс равнобедренный ав = всопускаем высоту вк на adbk^2 = ab^2 - ak^2 = 15^2 - ((33-15/2)^2 = 12^2s = 12 * (15+33)/2 = 2882) сумма длин радиусов вписанной и описанной окружности r + r = 7 sqrt(3)/2обозначим сторону буквой амедиана (высота, биссектриса) равна a sqrt(3)/2две трети медианы - радиус описанной окружностиодна треть - радиус вписанной (эти два утверждения справедливы только для правильного треугльника)сумма радиусов нам данаa sqrt(3)/2 = 7 sqrt(3)/2a = 7периметр 21s = 7 * 7 sqrt(3)/4 = 21 sqrt(3)/4
ответ: 1)треугольник ABD=треугольник CBD по 1 признаку
2)MKP=треугольник NTK по 1 признаку
3)треугольник KPS=треугольник RKS по 2 признаку.
4)треугольник PRE=треугольник SKR по 2 признаку.
5)треугольник SPM=треугольникMKT по 1 признаку.
6)треугольник CED=треугольник FDC по 1 признаку.
7)треугольник MTR =треугольник STN по 2 признаку.
8)треугольник KNM =треугольник LMN по 2 признаку.
9)треугольник ADE = FMB треугольник по 2 признаку.
10)треугольник ADB = DBC треугольник по 1 признаку.
Объяснение:
Первый признак равенства треугольников: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников: Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Используя эти 3 признака можно легко понять как решить все эти задачи.
4*4=16 см Площадь одной стороны
16*6(кол-во сторон куба) = 96 см
Объяснение: