Итак, у нас есть 2 высоты и диагональ. Эти 2 высоты разделили основание на 3 части по 40см , 16 и 40 см. Т.к трапеция р\б, треугольники ,что образованы высотами - равны , след. их стороны равны. средний отрезок равен 16 , т.к 1) у нас получился прямоугольник и напротив данного отрезка лежит меньшее основание , равное 16 см. рассмотрим "правый" треугольник :(если что , у меня диагональ идет с левого нижнего угла к правому верхнему) нам известно 2 стороны его - первая дана в условии - она равна 58 см, вторая = 40 см.Этот треугольник прямоугольный , следовательно высоту мы можем найти по теореме Пифагора = 3364-1600=1764. Корень = 42. Теперь рассмотрим треугольник , гипотенузой которой является наша диагональ. Один катет нам известен - только что его нашли. Второй найти тоже не проблема - 1 отрезок равен 40 см , второй - 16. значит катет равен 56 см . Опять теорема Пифагора = 56*56+42*42= 4900, корень равен 70 см.Вот мы и нашли диагональ
Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
Пусть в прямоугольном треугольнике АСВ угол В равен 30° (черт. 210). Тогда другой его острый угол будет равен 60°.
Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник — равносторонний.
Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.
Шар вписан в конус.
Осевое сечение конуса - правильный △АВР.
АР = РВ = АВ = 3 см
Найти:S поверхности шара - ?
Решение:Так как △АВР - правильный ⇒ он ещё и равнобедренный.
РО₁ - высота.
"Высота, проведённая из вершины равнобедренного треугольника к основанию равнобедренного треугольника, является его медианой и биссектрисой".
⇒ АО₁ = О₁В = 3/2 = 1,5 см, так как РО₁ - медиана.
Найдём высоту РО₁, по теореме Пифагора: (с = √(а² + b²), где с - гипотенуза; а, b - катеты).
а = √(c² - b²) = √(3² - 1,5²) = (3√3)/2 (см).
Итак РО₁ = (3√3)/2 (см).
АО₁ = 1,5 (см).
РО₁ = 3√3/2 (см).
⇒ S△ABP = 1/2 · PO1 · AB = PO1 · AO1 = 1,5 · 3√3/2 = 9√3/4 (см²).
АР = РВ = АВ = 3 (cм).
p - полупериметр.
р = АР + РВ + АВ/2 = 3 + 3 + 3/2 = 4,5 (см).
R вписанного шара (ОО1) = S△ABP/p = 9√3/4 : 4,5 = √3/2 (см).
S поверхности шара = 4пR².
или
S поверхности шара = пD².
D = 2R
S поверхности шара = п(4 · (√3/2)²) = п(3/4 · 4) = 3п см²
S поверхности = п(√3/2 · 2)² = п((√3)²) = 3п см²
ответ: 3п (см²).