угол DАВ =60 градусов
Объяснение:
Рассмотрим треугольник ОСВ, в нем ОС=ОВ как радиусы, значит он как минимум равнобедренный, а у равнобедренного треугольника углы при основании равны. Значит угол ОВС=ОСВ=60 градусов. Но если в треугольнике 2 угла по 60, то и третий угол СОВ= 60 градусов, потому что сумма углов в треугольнике 180, а 180 - (60+60) = 60. Значит этот треугольник равносторонний.
Рассмотрим треугольник АОВ, он равнобедренный, т.к. АО и ОВ радиусы. Угол АОВ смежный с углом СОВ, т.к. они образуют развернутый угол в 180 градусов,. Значит угол АОВ=180-СОВ=180-60=120 градусов.
Т.к. треугольник АОВ равнобедренный, углы при основании равны.
Угол ОАВ = углу ОВА. Их сумма= 180- угол АОВ=180-120=60
Значит каждый из них 60 : 2 = 30 градусов
Угол ОАD=90 градусов, т.к. ОА -это радиус к касательной АD.
Значит угол DАВ = 90 - угол ОАВ=90-30=60 градусов.
Объяснение:
1) ∠АВС= 180°-150°=30° по т. о смежных углах.
∠А=90°-30°=60° по свойству острых углов
2) ∠АВС=18°+46°=64°.
Пусть ВК - высота, поэтому ΔАВК- прямоугольний.
По свойству острых углов ∠А= 90°-18°=72°.
ΔВКС- прямоугольний.По свойству острых углов ∠С= 90°-46°=44°.
3)Дано:ΔABC и ΔA₁B₁C₁, ∠C=∠C₁=90°, AB=A₁B₁, ∠A=∠A₁.
Доказать: ΔABC=ΔA₁B₁C₁.
Доказательство:
Наложем ΔABC на ΔA₁B₁C₁. Гипотенузы АВ и А₁В₁ при этом совместятся.Катет AC пойдёт по катету A₁C₁, так как ∠A=∠A₁ по условию. Но BC⊥AC и B₁C₁⊥A₁C₁, значит BC совпадёт с B₁C₁.
Получила что вершины совместились значит ΔABC=ΔA₁B₁C₁.
Правильная четырёхугольная пирамида.
Стороны оснований = 5 см, 17 см.
Найти:А1С - ?
Решение:"Правильный многоугольник - многоугольник, у которого все углы и стороны равны".
Так как данная пирамида - правильная, четырёхугольная => основание данной пирамиды - квадрат.
"Квадрат - геометрическая фигура, у которой все стороны равны".
НО: Заметим, что нам даны совершенно разные величины оснований пирамиды.
=> перед нами - усечённая правильная четырёхугольная пирамида.
"Усечённая пирамида - часть пирамиды, заключённая между её основанием, боковыми гранями и сечением этой пирамиды".
=> CD = 17 (см), А1В1 = 5 (см).
Итак, у нас два квадрата А1В1С1D1 и АВСD, которые являются основаниями этой усечённый пирамиды.
Диагональным сечение данной усечённой пирамиды является равнобедренная трапеция А1АС1С.
Проведём высоту А1К.
Так как А1С1 и АС - диагонали квадратов АВСD и A1B1C1D1 => A1C1 = A1B1 * √2 = 5 * √2 = 5√2 (см)
Также АС = CD * √2 = 17√2 (см).
А1К ┴ АС, С1Н ┴ АС, так как А1К и С1Н - высоты.
=> А1С1НК - прямоугольник. => А1С1 = КН, А1К = С1Н.
Рассмотрим △АА1К и △СС1Н:
А1К = С1Н, так как А1С1НК - прямоугольник.
АА1 = С1С, так как А1АС1С - равнобедренная трапеция.
=> △АА1К = △СС1Н, по карету и гипотенузе.
=> АК = СН = 1/2(АС - А1С1) = 1/2(17√2 - 5√2) = 6√2 (см)
=> СК = АС - АК = 17√2 - 6√2 = 11√2 (см)
Найдём А1С, по теореме Пифагора: (с = √(a² + b²), где с - гипотенуза; а, b - катеты)
√(4² + (11√2)²) = √(16 + 121 * 2) = √258 (см)
ответ: √258 (см)