1) Геометрическое место точек, равноудаленных от точек А и В - это серединный перпендикуляр к прямой АВ. Вектор АВ{Xb-Xa;Yb-Ya;Zb-Za} ={1;4-1}. Середина вектора АВ - точка Р((1+0)/2;(2-2)/2; (0-1)/2) или Р(0,5;0;-0,5) Теперь надо найти точку М(0;0;z), чтобы вектор МР был перпендикулярен вектору АВ. Вектор МР{0,5-0;0-0;z-(-0,5)} = {0,5;0;z+0,5}. Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение векторов AB{1;4;-1} и MP{0,5;0;z+0,5}: (AB*MP) = Xab*Xco+Yab*Yco+Zab*Zco =1*0,5+4*0+(-1)*(z+0,5). Условие: 0-z=0 => z=0. ответ: z=0. 2) Векторы СО и АВ будут равными, если они сонаправлены и равны по модулю. Сонаправленные вектора, это вектора, координаты которых пропорциональны и коэффициент пропорциональности ПОЛОЖИТЕЛЕН. Вектор АВ{1-0;2-(-2);-1-0} = {1;4;-1}, вектор CO{0-x;0-y;0-0} = {-x;-y;0}. |AB|=√(1²+4²+(-1)²)=√18. |CO|=√((-x)²+(-y)²+0²). Если модули равны, то и квадраты модулей равны. x²+y² = 18. -x/1=-y/4 y=4x. x²+16x²=18 x²=18/17. x≈1,03 y²=18-18/17 =288/17 ≈17. y≈4,16. CO={1,03;4,16;0} 3) Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение векторов ВА{-1;-4;1} и m{Xm;1;2}: (ВА*m)= 1*Xm+4*Ym+Zab*Zm Или (BA*m)= (-1)*Xco-4*1+1*2=0. => Xm= -2. ответ: Xm= -2.
S = 336 см²
Объяснение:
Периметр ромба Р = 100 см
Найдём сторону ромба а = 0,25Р = 0,25 · 100 = 25 (см)
Пусть большая диагональ D = 24x, тогда малая диагональ d = 7x
Диагонали ромба перпендикулярны.
Рассмотрим прямоугольный треугольник, образованный половинками диагоналей и стороной ромба.
По теореме Пифагора а² = (0.5D)² + (0.5d)² = 0.25 (D² + d²)
25² = 0.25 · ((24x)² + (7x)²)
2500 = 576x² + 49x²
2500 = 625x²
x² = 4
x = 2
D = 24 · 2 = 48 (cм)
d = 7 · 2 = 14 (см)
Площадь ромба
S = 0.5 D · d = 0.5 · 48 · 14 = 336 (см²)