Дано:
ABC - равнобедренный треугольник
AC - Основание треугольника = AB - 3 или BC - 3
P = 15.6 см - Периметр треугольника
Так как треугольник равнобедренный, его боковые стороны равны.
AB = BC
Пусть x - любая боковая сторона треугольника
Так как нам известно, что основание треугольника на 3 раза меньше, мы можем написать уравнение.
P = x + x +(x-3) - Периметр - Сумма длин всех сторон(Боковая сторона+ Боковая сторона + Основание)
15.6=x+x+(x-3)
15.6=3x-3
18.6 = 3x
x = 6.2 - Боковая сторона
Основание = 6.2 - 3 = 3.2
Проверка:
3.2+6.2 +6.2 = 15.6 см
ответ: 6.2, 6.2, 3.2 см
5 х - длина 1-й диагонали
12 х - длина 2-й диагонали
Площадь ромба 120 см² равна половине произведения диагоналей.
120 = 0,5·5x·12x
120 = 30 х²
х² = 4
х = 2
5 х = 10 см - длина 1-й диагонали
12 х = 24 см - длина 2-й диагонали
Диагонали ромба разбивают его на 4 равных прямоугольных треугольника.
В каждом тр-ке катетами являются половинки диагоналей, равные 5 см и 12 см, а гипотенузой является сторона ромба а.
Тогда по теореме Пифагора:
а² = 25 + 144 = 169
а = 13 см - сторона ромба
Р = 4 а = 4·13 = 52 см - периметр ромба
ответ: угол А=36°
Объяснение: проведём из вершин верхнего основания к нижнему основанию АД две высоты ВН и СК. Они делят АД так что НК=ВС=7. АН+ДК=12-7=5
Высоты также образуют 2 прямоугольных треугольника АВН и СДК, в которых высоты и отрезки АН и ДК являются катетами а боковые стороны трапеции являются гипотенузой. Обе высоты имеют одну величину в обоих треугольниках. Пусть ВН=х, тогда ДК=5-х. Составим уравнение используя теорему Пифагора:
5²-(5-х)²=8²-х²
25-(25-10х+х²)=64-х²
25-25+10х-х²=64-х²
10х-х²+х²=64
10х=64
х=64/10
х=6,4
Итак: АН=6,4
Найдём угол А через косинус угла. Косинус это отношение прилежащего к углу катета к гипотенузе:
cosA=AH/AB=6,4/8=0,8≈36°