Ну, поскольку радиус нам сообщить забыли, пусть он R, c = AB = 3; b = AC = 4;
Треугольник тупоугольный, но нам опять забыли рассказать, какой именно из углов тупой. Логично считать, что это угол А между сторонами АВ и АС. Тогда два других угла - острые. Чтобы было поменьше скобок, обозначим диаметр D = 2*R.
sinB = b/D; (теорема синусов)
cosB = √(1 - (b/D)^2); (раз угол острый, то с плюсом)
sinC = c/D;
cosC = √(1 - (c/D)^2); (тоже с плюсом)
Ясно, что a = D*sinA = D*sin(180 - (B + C)) = D*sin(B + C) = D*(sinB*cosC + cosB*sinC) = c*√(1 - (b/D)^2) + b*√(1 - (c/D)^2);
Периметр равен
P = c*(1 + √(1 - (b/D)^2)) + b*(1 + √(1 - (c/D)^2));
Вот так, осталось числа подставить. :)
Если тупой угол не А, а, к примеру, С, то косинус угла С отрицательный. Сами можете все проделать в этом случае - в одном месте знак будет другой...
а) Пусть искомый угол <HAP=α.
<BPA - внешний угол треугольника АРС.
<BPA = (1/2)*<A +<С (внешний угол треугольника равен сумме двух внутренних, не смежных с ним).
<BHA =90° - внешний угол треугольника НАР.
<BHA=α+<BPA. Или α+<BPA=90°. Или
α=90°-(1/2)*<A - <С.(1)
<A=180-<B-<C (сумма внутренних углов треугольника равна 180°).
Тогда из (1):
α=90°-(1/2)*(180-<B-<C) - <С. Или
α=90°-90°+<B/2 +<C/2-<C = <B/2-<C/2.
ответ: искомый угол равен α=|<B-<C|/2, что и требовалось доказать.
Второй вариант:
Пусть искомый угол <HAP=α.
<BPA - внешний угол треугольника АРС.
<BPA = (1/2)*<A +<С (1) (внешний угол треугольника равен сумме двух
внутренних, не смежных с ним).
<BHA =90° - внешний угол треугольника НАР.
<BРA=α+90°. Тогда из (1):
α=(1/2)*<A +<С - 90°. (2)
<A=180-<B-<C (сумма внутренних углов треугольника равна 180°).
Тогда из (2):
α=90°-(1/2)*<B-(1/2)*<C) - 90°+<С. Или
α=<С/2 - <В/2 = |<B-<C|/2.
P.S. Рассматривать все комбинации углов треугольника (в том числе и
тупоугольниго) нет необходимости, так как доказательство будет
подобным. Искомый угол равен модулю разности значений углов
В и С, так как отрицательное значение не удовлетворяет условию.
б). Искомый угол - угол СDE = α.
<CBE - внешний угол треугольника CDB.
<CBE=<DCB+α = >
(1/2)*(180 - <B) =(1/2)*<C + α . =>
α = 90° - (1/2)*<B -(1/2)*<C.
α = 90° - (1/2)*(<B+<C) . =>
2α = 180° - (<B+<C) . =>
2α = <A.
α = <A/2. Что и требовалось доказать.
в) CD и ВЕ - биссектрисы.
Искомый угол - угол α.
α = 180° - (1/2)*(В+С) (сумма внутренних углов треугольника
ВОС=180°). =>
2α =360° -(<B+<C) = 180°+180°-(<B+<C).
<A = 180°-(<B+<C).
2α = 180° + <A.
α = 90°+<A/2, что и требовалось доказать.