Объяснение: обозначим радиус r, a высоту h. Если r/h=1/2, то: h=2r. 2 радиуса
- это диаметр, и диаметр основания равен высоте. Высота, радиус и диагональ осевого сечения цилиндра образуют равнобедренный прямоугольный треугольник, в котором диаметр основания и высота являются катетами а диагональ гипотенузой. В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, поэтому h=диаметру=12√2/√2=
=12, тогда радиус=12/2=6
Найдём площадь основания по формуле:
Sосн=πr²=π×6²=36π
Теперь найдём объем цилиндра зная его площадь основания и высоту по формуле: V=Sосн×h=36π×12=432π(ед³)
Правильная треугольная пирамида SABC Двугранный угол ∠AKS = 60° Апофема SK = 4 см
Высота SO правильной пирамиды опускается в центр окружности, вписанной в равносторонний ΔABC ⇒ r = ОК ΔSOK прямоугольный : ∠SOK = 90° r = OK = SK*cos 60° = 4*1/2 = 2 см h = SO = SK*sin 60° = 4*√3/2 = 2√3 см Если в равносторонний ΔABC вписана окружность с радиусом r=2 см, то сторона треугольника a = CB = 2√3 r = 2√3 * 2 = 4√3 см Площадь равностороннего треугольника S = a²√3/4 = (4√3)²*√3/4 = 48*√3/4 = 12√3 см²
Объем пирамиды V = 1/3 S h = 1/3*12√3 *2√3 = 24 см³
ответ: 432π
Объяснение: обозначим радиус r, a высоту h. Если r/h=1/2, то: h=2r. 2 радиуса
- это диаметр, и диаметр основания равен высоте. Высота, радиус и диагональ осевого сечения цилиндра образуют равнобедренный прямоугольный треугольник, в котором диаметр основания и высота являются катетами а диагональ гипотенузой. В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, поэтому h=диаметру=12√2/√2=
=12, тогда радиус=12/2=6
Найдём площадь основания по формуле:
Sосн=πr²=π×6²=36π
Теперь найдём объем цилиндра зная его площадь основания и высоту по формуле: V=Sосн×h=36π×12=432π(ед³)