Радиус перпендикулярен касательной в точке касания, а отрезки касательных АМ и ВМ равны по свойству касательных из одной точки. Следовательно, прямоугольные треугольники ОАМ и ОВМ равны по катету и общей гипотенузе. Тогда <AOM=<BOM=60°, а <АМО=<BMO=30° и МО=16см, так как ОА=ОВ=8см - катет против угла 30°.По Пифагору АМ=ВМ=√(16²-8²)=8√3см.
Треугольник АВМ равносторонний, так как угол при его вершине равен 60°.
Следовательно, его периметр равен 3*8√3=24√3см.
ответ: периметр равен 24√3 см.
Подробнее - на -
Объяснение:
1, 3-й угол равен: 180 - 120 - 40 = 180 - 160 = 20
Против большей стороны в треугольнике лежит и больший угол
Против АВ лежит угол С = 120гр
Против ВС лежит угол А = 40гр
Против АС лежит угол В = 20гр
берешь угол B за x
2, получается, что угол С равен 12x
сумма углов в трегольнике равна 180 градов
уравнение составляем
50+12x+X=180
50+13x=180
13x=130
x=10
следовательно угол С равен 120 градусов
ответ: С=120, B=10
3, угол BDC=45+35-180=100
угол ADC=100-180=80
угол CAD=180-(45-80)=55
ответ: угол С=45, D=80, А=55
Объяснение:
ответ: V=768√2(ед³)
Объяснение: в основании правильной четырёхугольной пирамиды лежит квадрат поэтому все стороны основания равны по 8√3. Диагональ основания ВД делит его на 2 равных равнобедренных прямоугольных треугольника в которых стороны основания являются катетами а диагональ гипотенузой, а также диагонали пересекаясь делятся пополам, поэтому ВО=ДО=АО=СО. В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз поэтому ВД=8√3×√2=8√6.
ВО=ДО=8√6/2=4√6. Боковое ребро КД, высота КО и ДО образуют прямоугольный треугольник в котором КО и ДО - катеты, а КД - гипотенуза. Также угол КДО=60° и така как сумма острых углов прямоугольного треугольника составляет 90°, то угол ДКО=90-60=30°. Катет лежащий напротив него равен половине гипотенузы поэтому гипотенуза КД=4√6×2=8√6
Найдём КО по теореме Пифагора:
КО²=КД²-ДО²=(8√6)²-(4√6)²=64×6-16×6=
=384-96=288;. КО=√288=12√2
Sосн=(8√3)²=64×3=192(ед²)
Теперь найдём объем пирамиды зная её высоту и площадь основания по формуле: V=⅓×Sосн×КО=⅓×192×12√2=
=64×12√2=768√2(ед³)