В прямоугольном треугольнике с прямым углом С высота из вершины прямого угла пересекает биссектрису AL в точке К. При этом AK=9, а KL=6. Площадь треугольника равна
Введем обозначения: ABC - исходный треугольник с прямым углом C, высотой CN и биссектрисой AL пересекающимися в точке K.
Нетрудно видеть, что прямоугольные треугольники ACL и ANK подобны. И коэффициент подобия по отношению их гипотенуз |AL|/|AK| = (9+6)/9 = 15/9 = 5/3.
Стало быть и их катеты |AC|/|AN| = 5/3. Но прямоугольный треугольник ACN (в котором эти стороны гипотенуза и катет) подобен всему треугольнику ABC в котором стало быть стороны |AB|, |AC| и |CB|относятся как 5:3:4 (4 = корень(5*5-3*3).
Достаточно узнать длину |AC| чтобы найти всю площадь. S = |AC|*|CB|/2 = |AC|*(4/3)*|AC|/2 = (2/3)*|AC|^2
Но |AC| равна 15*cos(A/2), где по формуле косинуса половинного угла cos(A/2) = корень((1+cos(A))/2) = корень((1+3/5)/2) = корень(4/5).
То есть S = (2/3)*(15*корень(4/5))^2 = (2/3)*15*15*(4/5) = 2*4*15 = 120
Итак 1. Определим массу одной молекулы кислорода, либо из таблицы, либо из формулы m = M/Na, где M - молярная масса кислорода, Na - число авагадро (всё это табличные данные) 2. Закон сохранения импулься в проекции на нормаль к стенке mV*sin30 = mV/2 = p - mV/2 т.к. удар будем считать абсолютно упругим, а стенку достаточно массивной (её скорость после столкновения стремится к нулю). отсюда: mV = p =>V = p/m = 2υ, где υ - среднеквадратичная скорость. => υ = p/2m 3. Кинетическая энергия одной молекулы связана с температурой следующим соотношением E = ikT/2, где i - количество степеней свободы (у двухатомного газа i =5 ). k - постоянная Больцмана, T - искомая температура. E = mυ²/2 => E = p²/8m = 5kT/2 => T = p²/20mk Как-то так.
Мыс Челюскина, мыс Дежнева мыс в Анадырском заливе, Россия; мыс в Тауйской губе, Россия;
пролив между Новой Землей и полуостровом Таймыр носит имя Бориса Вилькицкого, острова в Карском море названы именами полярных исследователей Шокальского, Сибирякова, Неупокоева, Исаченко, Воронина… Среди морей, названных именами известных географов Баренца и Беринга, появилось на географических картах море Лаптевых, которого не существовало на старых, дореволюционных картах. Оно было названо в честь замечательных исследователей Арктики Харитона Прокофьевича и Дмитрия Яковлевича Лаптевых, принимавших участие в Великой Северной экспедиции XVIII века. Именем Дмитрия Лаптева назван и пролив, соединяющий море Лаптевых с Восточно-Сибирским морем, а берегом Харитона Лаптева назвали северо-западное побережье Таймырского полуострова - от Пясинского залива до залива Таймырского. г. Кропоткин (Краснодарский край) - П. А. Кропоткин (князь, русский географ и геолог) , г. Лазарев (Хабаровский край) - М. П. Лазарев (русский путешественник) , г. Макаров (Сахалинская обл. ) - С. О. Макаров (русский флотоводец, океанограф) , пос. Пояркова (Амурская обл. ) - В. Д. Поярков (русский землепроходец) , пос. Пржевальское (Смоленская обл. ) - Н. М. Пржевальский (русский путешественник) , г. Хабаровск, станция Ерофей Павлович (Амурская обл. ) - Ерофей Павлович Хабаров (русский землепроходец) , г. Шелехов (Шелихов) (Иркутская обл. ) - Г. И. Шелихов - русский путешественник;
Введем обозначения: ABC - исходный треугольник с прямым углом C, высотой CN и биссектрисой AL пересекающимися в точке K.
Нетрудно видеть, что прямоугольные треугольники ACL и ANK подобны. И коэффициент подобия по отношению их гипотенуз |AL|/|AK| = (9+6)/9 = 15/9 = 5/3.
Стало быть и их катеты |AC|/|AN| = 5/3. Но прямоугольный треугольник ACN (в котором эти стороны гипотенуза и катет) подобен всему треугольнику ABC в котором стало быть стороны |AB|, |AC| и |CB|относятся как 5:3:4 (4 = корень(5*5-3*3).
Достаточно узнать длину |AC| чтобы найти всю площадь. S = |AC|*|CB|/2 = |AC|*(4/3)*|AC|/2 = (2/3)*|AC|^2
Но |AC| равна 15*cos(A/2), где по формуле косинуса половинного угла cos(A/2) = корень((1+cos(A))/2) = корень((1+3/5)/2) = корень(4/5).
То есть S = (2/3)*(15*корень(4/5))^2 = (2/3)*15*15*(4/5) = 2*4*15 = 120
Объяснение: