Боковые грани призмы - параллелограммы, и площадь каждого равна произведению высоты на основание.
Примем за основания граней (параллелограммов) боковые ребра. Они равны, а высоты - стороны треугольника в перпендикулярного сечения призмы, они разной длины.
Треугольник сечения подобен треугольнику со сторонами 9, 10, 17, площадь которого, найденная по ф.Герона, равна 36 (см²) (Можно без труда проверить)
Площади подобных фигур относятся, как квадрат коэффициента подобия их линейных элементов.
Если площадь сечения обозначить S, а площадь треугольника со сторонами 9,10,17 – S1, то S:S1=k²
S:S1=144:36=4
k²=3, ⇒k=√4=2
Следовательно, периметр сечения равен 2•(9+10+17)=72 см
Площадь боковой поверхности призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
S=72•8=576 см²
3+5+7=15
Сумма всех внутренних углов треугольника равна 180 градусов
Чему равна 1 часть
180:15=12 градусов
Сумма внутреннего и смежного ему внешнего угла равна 180 градусов
<1 внутренний =12•3=36 градусов
<1 внешний=180-36=144 градусов
<2 внутренний=12•5=60 градусов
<2 внешний=180-60=120 градусов
<3 внутренний=12•7=84 градуса
<3 внешний=180-84=96 градусов
Проверка-сумма внутренних углов должна быть 180 градусов
36+60+84=180 градусов
Сумма внешних углов должна быть 360 градусов
144+120+96=360 градусов
Объяснение:
Объяснение:Есть задача с ответом напишите как решаетса