Объяснение: если треугольник прямоугольный, то вычислим наибольшую его сторону: АВ; ВС; АС по формуле:
АB²=(Ах-Ау)²+(Ау-Ву)²+(Аz-Bz)²;
AB²=(3-(-4))²+(-5-2)²+(-2-3)²=
=(3+4)²+(-7)²+(-5)²=7²+49+25=49+74=123
AB=√123=3√41
Остальные стороны найдём по этой же формуле:
BC²=(-4-(-2))²+2-(-4))²+(3-5)²=
=(-4+2)²+(2+4)²+(-2)²=(-2)²+6²+4=4+36+4=44
ВС=√44=2√11
АС²=(3-(-2))²+(-5-(-4))²+(-2-5)²=
=(3+2)²+(-5+4)²+(-7)²=5²+(-1)²+49=25+1+49=
=75; АС=√75=5√3
Итак: АВ=√123=3√41; ВС=√44=2√11;
АС=√75=5√3
Самая большая сторона АВ, значит она и является гипотенузой. Гипотенуза лежит напротив угла 90°, значит этим углом является угол С. Косинус-это отношение прилежащего к углу катета к гипотенузе, поэтому cosA=AC/AB=√75/√123=√(75/123)=
1) По формуле S(∆) = ½*h(a)*a, где а - какая-то сторона ∆ АВС, h(a) - высота, проведенная к этой стороне. Тогда S(∆ ABC) = ½*h(a)*a = ½*11*7 = 77/2 = 38.5 см². ответ: S(∆ ABC) = 38.5 см². 2) Найдём второй катет по теореме Пифагора. Пусть катеты равны a и b, а гипотенуза равна с, причем длины всех сторон положительны. Тогда по теореме Пифагора а² + b² = с², теперь подставим числа: 12² + b² = 13², то есть b² = 13² - 12² = (13 - 12)(13 + 12) = 1*25 = 25. Тогда b = √25 = 5, т.к. длина > 0. Значит, катеты данного прямоугольного ∆ равны 12 и 5 см. Тогда по той же формуле (т.к. катеты в прямоугольном ∆ перпендикулярны, то S(прямоугольного ∆) равна полупроизведению его катетов) S(∆) = ½*h(a)*a = ½*b*a = ½*12*5 = 6*5 = 30 см². ответ: второй катет равен 5 см, S(прямоугольного ∆) = 30 см².
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
ответ: cosA=5√41
Объяснение: если треугольник прямоугольный, то вычислим наибольшую его сторону: АВ; ВС; АС по формуле:
АB²=(Ах-Ау)²+(Ау-Ву)²+(Аz-Bz)²;
AB²=(3-(-4))²+(-5-2)²+(-2-3)²=
=(3+4)²+(-7)²+(-5)²=7²+49+25=49+74=123
AB=√123=3√41
Остальные стороны найдём по этой же формуле:
BC²=(-4-(-2))²+2-(-4))²+(3-5)²=
=(-4+2)²+(2+4)²+(-2)²=(-2)²+6²+4=4+36+4=44
ВС=√44=2√11
АС²=(3-(-2))²+(-5-(-4))²+(-2-5)²=
=(3+2)²+(-5+4)²+(-7)²=5²+(-1)²+49=25+1+49=
=75; АС=√75=5√3
Итак: АВ=√123=3√41; ВС=√44=2√11;
АС=√75=5√3
Самая большая сторона АВ, значит она и является гипотенузой. Гипотенуза лежит напротив угла 90°, значит этим углом является угол С. Косинус-это отношение прилежащего к углу катета к гипотенузе, поэтому cosA=AC/AB=√75/√123=√(75/123)=
=(√25/41)=5/√41