Пирамида правильная, значит в основании лежит правильный треугольник, а основание высоты пирамиды SO лежит в центре треугольника О. В правильном треугольнике высота его делится точкой О на отрезки в отношении 2:1, считая от вершины (по свойству медиан, а высота - это и медиана в правильном треугольнике). В прямоугольном треугольнике АSO АО/АS=Cos(<SAO). Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6. Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9. ответ: высота основания пирамиды равна 9.
1) Пусть будет треугольник АВС, АВ=7, АС=13, угол В = 60 градусов. По теореме синусов
Угол С=27 градусов 47 минут. По теореме о сумме углов треугольника находим, что угол А равен 92 градуса 13 минут.
Синусы можно найти в таблице Брадиса. ответ: ВС=15.
2) Диагонали прямоугольника равны, они делятся точкой пересечения пополам. Угол в 60 градусов - острый, поэтому он смотрит в сторону меньшей стороны. Значит, у нас есть равнобедренный треугольник с основанием 5 и углом в 60 градусов, то есть он равносторонний и его сторона равна 5. Тогда диагональ прямоугольника равна 5*2=10. Всё просто) ответ: 10.
y=56*x-107
Объяснение: Уравнение касательной описывается формулой:
y = f ’(x0) · (x − x0) + f(x0). (1)
f'(x) = 6*x²+2
f'(x0)= f'(3)=6*3²+2=6*9+2 =56
f(x0)=f(3)=2*3^3+2*3+1= 2*27+6+1=61
Подставив найденное в (1) , получим
y=56(x-3)+61= 56*x-168+61=56*x-107