Сделаем рисунок. Сумма противоположных углов вписанного четырехугольника равна 180° Т.к. угол КLМ =120°, угол МNК=60° LN - биссектриса. Углы МLN=КLN=60° В окружности равные вписанные углы опираются на равные дуги и на равные хорды. Хорды МN=КN. Треугольник КNМ - равнобедренный с равными углами при стороне КМ. Из суммы углов треугольника углы при КМ равны по 60°⇒ треугольник КМN - равносторонний. По т.косинусов найдем сторону КМ из треугольника КLМ. КМ²=4²+6²-2*4*6*cos (120°) KM²=76 Из треугольника МLN по т.косинусов выразим сторону MN МN²=LМ²+LN²-2*6*LN*cos(60°) 76=36+LN²-6*LN LN²-6*LN-40=0 Решив квадратное уравнение (вычисления сделаете сами), LN=10 Второй корень отрицательный и не подходит.
Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT