Объяснение:
Повернем квадрат ABCD относительно точки A на 90° так, чтобы точка B перешла в точку D. При этом повороте точка M переходит в точку Mў, а точка K - в точку Kў. Ясно, что РBMA = РDMўA. Так как РMAK = РMAB = РMўAD, то РMAD = РMўAK. Поэтому РMўAK = РMAD = РBMA = РDMўA, а значит, AK = KMў = KD + DMў = KD + BM.
18.2.
При повороте на 90° относительно точки P прямые PA1, PB1, PM1 и CH переходят в прямые, параллельные CA, CB, CM и AB соответственно. Следовательно, при таком повороте треугольника PA1B1 отрезок PM1 переходит в медиану (повернутого) треугольника.
18.3.
Рассмотрим поворот на 90° относительно точки B, переводящий вершину K в вершину N, а вершину C - в A. При этом повороте точка A переходит в некоторую точку Aў точка E - в Eў. Так как Eў и B - середины сторон AўN и AўC треугольника AўNC, то BEў||NC. Но РEBEў = 90°, поэтому BE^NC.
Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.