Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -
140:2 =70 градусов каждый угол при основании равнобедренного треугольника.
Если при основании углы по 40 градусов, то тогда, 180 - (40+40) = 100 градусов это угол при вершине.
2) Если один угол 60 градусов, то 180 - 60 =120 градусов - это сумма двух углов одинаковых.
Тогда 120 : 2 = 60 градусов каждый.
Треугольник получился правильный или равносторонний.
3) Если один угол 100 градусов, то тогда 180 - 100 = 80 градусов это два одинаковых угла при основании треугольника. Тогда каждый угол будет
равен 80 : 2 = 40 градусов.