Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см
∠ N = ∠ K = 110°
∠ M = ∠ P = 70°
Объяснение:
∠ К = ∠NKP + ∠NKM = 38 + 72 = 110°
∠ K = ∠ N = 110°
∠ M = 180 - ∠ N
∠ M = 180 - 110 = 70°
∠ M = ∠ P