2. Через эту точку провести прямую произвольной длины
3. Взять циркуль и провести окружность с центром в точке, которую мы построили в 1 пункте
4. Отметить точки пересечения нашей окружности из 3 пункта и прямой (точки А и B) - это будут крайние точки нашего основания.
5. Не изменяя раствора циркуля провести из точек А и B окружности, точка пересечения этих окружностей будет 3 вершиной равнобедренного треугольника.
6. Соединить 3 полученные точки.
3 этап:
Пусть AB = a.
Отметим на нашем основании точку М = b ⋂ a. По рисунку эта точка совпадает с точкой пересечения окружностей, которые мы провели из крайних точек основания: точек А и B.
АМ = BM (как радиусы равных окружностей), а значит т.М совпадает с точкой пересечения медианы и основания. Отсюда, так как медиана совпадает с биссектрисой треугольник является равнобедренным.
Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так. Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления. МО=3, как катет, лежащий против угла в 30° Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания. Далее вспоминаем свойство медиан Δ-ка: Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Поэтому Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
1 этап:
Точка, прямая, окружность.
2 этап:
1. На плоскости нужно отметить произвольную точку
2. Через эту точку провести прямую произвольной длины
3. Взять циркуль и провести окружность с центром в точке, которую мы построили в 1 пункте
4. Отметить точки пересечения нашей окружности из 3 пункта и прямой (точки А и B) - это будут крайние точки нашего основания.
5. Не изменяя раствора циркуля провести из точек А и B окружности, точка пересечения этих окружностей будет 3 вершиной равнобедренного треугольника.
6. Соединить 3 полученные точки.
3 этап:
Пусть AB = a.
Отметим на нашем основании точку М = b ⋂ a. По рисунку эта точка совпадает с точкой пересечения окружностей, которые мы провели из крайних точек основания: точек А и B.
АМ = BM (как радиусы равных окружностей), а значит т.М совпадает с точкой пересечения медианы и основания. Отсюда, так как медиана совпадает с биссектрисой треугольник является равнобедренным.
4 этап:
Да, всегда будет иметь решения.