Для начала вспомним, что тупой угол - это угол с градусной мерой больше 90° и меньше 180°. Из одной точки можно пустить три луча, которые между собой образуют 3 тупых угла.
Пустим 4-й луч вблизи одного из трёх лучей, у нас добавится дополнительно 2 тупых угла. 5-й луч пустим вблизи второго из числа первых трёх, дополнительно образуются 3 тупых угла. Наконец, пускаем 6-й луч вблизи третьего, получив дополнительно 4 тупых угла. У нас будет получаться как бы три пучка близко расположенных лучей в каждом пучке.
Считаем сколько получилось тупых углов после добаления к первым трём лучам ещё трёх лучей. 3 луча было, плюс 2, плюс 3 и плюс 4, всего 12 лучей.
Итак, для 3-х лучей - 3 тупых угла; для 6 лучей - 12 тупых углов.
Рассуждаем аналогично, добавляя по очереди ещё 3 луча. Добавятся сначало 4 угла, затем 5 и, наконец, 6; т.е. всего добавится 15 тупых углов. А всего для 9 лучей будет 27 тупых углов.
Точно также, считая для 12 лучей, получим дополнительно 6+7+8 = 21 тупых угла, а всего - 48.
Можно было бы и далее продолжать таким но мы замечаем закономерность.
Пусть а1 = 3 - это первый член последовательности. Используя предыдущее значение (рекуррентно), можно вычислить следующее значение по формуле:, где n - число лучей кратное 3.
Пробуем вычислить по этой формуле:
Итак, ответ найден. Для 27 лучей возможно максимум 243 тупых угла.
Так считать долго, можно увидеть формулу для прямого расчёта:
По этой формуле можно считать для любого количества лучей, кратное трём.
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.