1) Справа от точки 0 на единичной дальности отмечена число 1, что означает справа от точки 0 направление положительное и цена деления равна 1;
2) точка А отдалена от точки 0 на 4 единицы в положительном направлении, поэтому имеет координату 4, то есть А(4);
3) точка В отдалена от точки 0 на 10 единицы в положительном направлении, поэтому имеет координату 10, то есть В(10).
Расстояние между двумя точками А(x₁) и В(x₂) определяется по формуле AB= |x₁-x₂|. Поэтому расстояние между точками А(4) и В(10) равна |4-10|.
С другой стороны, по рисунку видно, что между точками А(4) и В(10) находится 6 единичных отрезков, поэтому расстояние между точками А(4) и В(10) равно 6.
Пока оформляла решение, ответ уже дали, и т.к. оно несколько отличается. даю вариант решения этой задачи. В прямой призме в основании лежит прямоугольный равнобедренный треугольник. Найти площадь сечения, проходящего через катет нижнего основания и середину гипотенузы верхнего, если расстояние между основаниями 4 и равно расстоянию от вершины нижнего основания до плоскости сечения. Сделаем рисунок призмы. Сечение пересекает верхнее основание призмы по прямой КМ, параллельной СВ и, следовательно, параллельной С₁В₁. Так как К - середина катета С₁А₁, прямая КМ - средняя линия треугольника А₁С₁В₁. С₁К=КА₁ Опустим на АС перпендикуляр КН. Он равен высоте призмы. Прямоугольники СС₁КН и АА₁КН равны, т.к. имеют равные стороны. ⇒ их диагонали СК и АК также равны. ⇒ Треугольник СКА - равнобедренный с высотой КН. АТ - также является высотой этого равнобедренного треугольника, проведенной к его боковой стороне КС ( расстояние от точки до плоскости есть перпендикуляр ) и по условию равна высоте призмы. ⇒ КН=АТ=4 Если высоты равнобедренного треугольника, проведенные к основанию и боковой стороне, равны, этот треугольник - равносторонний и все углы в нем равны 60° АС=СВ=АК=СК АС=СВ=КН:sin (60°)=8:√3 КМ=СВ:2=4:√3 СК=АС=8:√3 и перпендикулярна СВ ( по теореме о трех перпендикулярах) СКМВ - прямоугольная трапеция. Площадь трапеции равна произведению высоты (КС) на полусумму оснований. (КМ+СВ)=8:√3 + 4:√3 =12:√3 =4√3 S (СКМВ)=(8:√3)*(4 √3):2=16 единиц площади) ---------- [email protected]
А(4) и В(10), |4-10|=6
Пошаговое объяснение:
Определим координаты точек A и B:
1) Справа от точки 0 на единичной дальности отмечена число 1, что означает справа от точки 0 направление положительное и цена деления равна 1;
2) точка А отдалена от точки 0 на 4 единицы в положительном направлении, поэтому имеет координату 4, то есть А(4);
3) точка В отдалена от точки 0 на 10 единицы в положительном направлении, поэтому имеет координату 10, то есть В(10).
Расстояние между двумя точками А(x₁) и В(x₂) определяется по формуле AB= |x₁-x₂|. Поэтому расстояние между точками А(4) и В(10) равна |4-10|.
С другой стороны, по рисунку видно, что между точками А(4) и В(10) находится 6 единичных отрезков, поэтому расстояние между точками А(4) и В(10) равно 6.
Тогда |4-10|=6.
Объяснение: