Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Угол ВСЕ равен 180 град. - 62 град. = 118 град. , т.к. угол АСВ = 180 - 30 - 88 = 62 (град.) Угол ВСД = 118 : 2 = 58 (град.), т.к. СД - биссектриса. Угол СВД = 180 - 88 = 92 (град.), т.к. это внешний угол Угол ВДС = 180 - 59 - 92 = 29 (град.), т.к. сумма углов в треугольнике = 180 град. Углы ВДС и СДЕ равны, т.к. треугольники СВД и СДЕ равны, по признаку равенства треугольников (одна сторона общая , стороны ВС и СЕ равны по условию, углы ВСД и ДСЕ равны, т.к. разделены бисектриссой.)
Значит Угол ВДЕ равен угол BDC, умноженный на два, т.е.29 х 2 = 58 (град.)
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0