Правильная призма- это прямая призма,основанием которой является правильный многоугольник. Боковые грани правильной призмы - равные прямоугольники.
1)Построение: так как ⊂ и ⊂ так как ⊂ и ⊂ так как ⊂ и ⊂ Таким образом, Δ искомое сечение 2) Найдём площадь этого сечения: квадрат ∩ см ( как диагонали квадрата) см Δ Δ ( по двум катетам) ⇒ Δ равнобедренный ⊥ ⇒ средняя линия Δ (по условию)
Если известны стороны! Проведем две медианы к боковым сторонам треугольника. Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой. Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα Выразим медиану одного из образовавшихся треугольников по теореме косинусов. Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны. Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
Пусть куб единичный.
Пусть A- начало координат
Ось X- AB
Ось Y - AD
Ось Z - AA1
Вектора
D1C ( 1;0;-1)
B1D (-1;1;-1)
D1C*B1D = 1* (-1) + 0*1 + (-1)*(-1) = 0
Угол 90 градусов
Вектор
AB1(1;0;1)
Плоскость ABC1 - проходит через начало координат .
Уравнение
ax+by+cz=0
Подставляем координаты точек B(1;0;0) и С1(1;1;1)
a=0
a+b+c=0
Пусть b=1 тогда с= -1
Искомое уравнение
y-z=0 Нормаль (0;1;-1)
Синус угла между (AB1 ; ABC1 ) = | (1;0;1)*(0;1;-1) | / | AB1 | / | (0;1;-1) | = 1/2
Угол 30 градусов.