ответ: Р=32см
Объяснение: обозначим вершины треугольника А В С, а точки касания Д К М, причём Д лежит на АВ; К лежит на ВС; М на АС. Стороны треугольника являются касательными к вписанной окружности и поэтому отрезки касательных соединяясь в одной вершине равны от вершины до точки касания. Поэтому ВД=ВК=4см; АД=АМ=6см; СМ=СК=6см. Из этого следует что АМ=СМ=6см. Теперь найдём стороны треугольника зная длину отрезков:
АВ=ВС=4+6=10см; АС=6+6=12см. Теперь найдём периметр треугольника зная его стороны:
Р=10+10+12=20+12=32см
Для прямоугольного треугольника справедлива теорема Пифагора : квадрат гипотенузы равен сумме квадратов катетов.
Треугольник с заданными сторонами является прямоугольным.
25² = 7² + 24²
625 = 49 + 576 = 625
Пусть коэффициент пропорциональности равен k, тогда пропорциональные стороны треугольника будут 7k, 24k, 25k
(25k)² = (7k)² + (24k)²
625k² = 49k² + 576k² ⇒ 625k² = 625k²
Для треугольника со сторонами 7k, 24k, 25k тоже справедлива теорема Пифагора, значит, треугольник является прямоугольным.
Нет