Т.к. BF - медиана и высота треугольника ABD, то AB=BD. На продоложении отрезка BA за точку A возьмем точку G так, что AG=AB и пусть H - точка пересечения прямой BE с GC. Тогда AB=BC и BH - биссектриса и медиана треугольника GBC, Е - точка пересечения его медиан, AD - его средняя линия. Т.к. треугольник GEH подобен треугольнику DEF с коэффициентом подобия 2, то S(GEH)=4S(DEF)=20. Т.к. медианы BH, CA и GD треугольника GBC делят его на 6 равновеликих треугольников (это так в любом треугольнике), то S(ABC)=3*S(GEH)=60.
Ромб АВСД, уголВ=уголД, уголА=уголС, уголС=1/2уголД, уголД=2*уголС, уголС+уголД=180, 3*уголС=180, уголС=уголА=180/3=60, уголД=уголВ=2*60=120, АМ=МД=х, АД=2*АМ=2х=ВС=АВ=СД, СО=ОД=х, площадь треугольника ВСО=1/2*ВС*СО*sinС=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадьтреугольника ОДМ=1/2*ОД*МД*sinД=1/2*х*х*корень3/2=х в квадрате/4, площадь треугольника АВМ=1/2*АВ*АМ*sinА=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадь АВСД=АВ в квадрате*sinА=2х*2х*корень3/2=2*х в квадрате*корень3, площадь треугольника ВМО=площадьАВСД-площадь АВМ-площадь-ВСО-площадь ОДМ=2*х в квадрате-(х в квадрате*корень3/2) -(х в квадрате*корень3/2)-(х в квадрате*корень3/4)=3*х в квадрате*корень3/4, 3√з = 3*х в квадрате*корень3/4, х в квадрате=4, х=2, АВ=АД=СД=ВС=2*2=4, площадь АВСД=4*4*корень3/2=8*корень3
4ПиR^2=9Пи
R^2=9/4
R=3/2
V=4/3Пи*27/8=4.5Пи