В прямоугольный треугольник вписана окружность.Точка касания делит гипотенузу в отношении 5:12. Найдите площадь треугольника если центр окружности удален от вершины прямого угла на расстоянии корень из 18
сделаем построение по условию найдите угол между прямыми AB1 и CD1 РЕШЕНИЕ Углы между прямой AB1 и любой прямой параллельной прямой CD1 будут равны. Грани CDD1A1 и AFF1A1 параллельны и являются квадратами. CD1 и AF1 диагонали этих граней, которые лежат в плоскости ACD1F1. Сделаем параллельный перенос CD1 в AF1 и найдем угол <B1AF1 равный искомому углу. AB1 = AF1 - диагонали квадратов. По формуле Пифагора AB1 = AF1 = √ 1² + 1² = √2 В правильном шестиугольнике A1B1C1D1E1F1 все углы 120 град, тогда в треугольнике B1A1F1 <B1A1F1 = 120 По теореме косинусов B1F1² = DB1² + DF1² - 2*DB1*DF1*cos120 все ребра равны 1 B1F1² = 1² + 1² - 2*1*1*cos120 = 3 По теореме косинусов B1F1² = AB1² + AF1² - 2*AB1*AF1*cos<B1AF1 cos<B1AF1 = (AB1² + AF1² - B1F1²) / (2*AB1*AF1) cos<B1AF1 = (√2² + √2² - 3) / (2*1*1) = 1/2 = cos 60 <B1AF1 = 60 град (или п/3) ответ 60 град (или п/3)
Свойство параллельного переноса: при таком переносе прямая имеет свойство переходить в такую же параллельную прямую. Задача сводится к построению параллельных прямых и имеет несколько вариантов. Вот два из них: Дана прямая Зх-4у-5=0 или у=(Зх-5)/4. Строим эту прямую по двум точкам: при Х=0 => у=-5/4=1и1/4. при у=0 => х=5/3=1и2/3. Вектор нормали к этой прямой п(3;-4). Этот вектор - общий для всех прямых, параллельных данной. 1. Общее уравнение прямой, проходящей через точку О(0;0) и имеющей вектор нормали n(3;4): 3(х-0)+(-4)(у-0)=0 или Зх-4у=0 или у=(3/4)х. Строим эту прямую по двум точкам: приХ=0 => у=0. при х=2 => х=3/2 =1и 1/2. 2. Общее уравнение прямой, проходящей через точку К(3;-2) и имеющей вектор нормали n(3;4): 3(х-3)+(-4)(у-(-2))=0 или Зх-4у-17=0 или у=(3х-17)/4 или y=(3/4)*x-9/4. Строим эту прямую по двум точкам: при Х=0 => у=-17/4=-4и1/4. при y=0 => х=17/3 или 5и1/3. Второй вариант: Дана прямая Зх-4у-5=0 или у=(Зх-5)/4 или y=(3/4)*x-5/4. Строим эту прямую по двум точкам: при Х=0 => у=-5/4=1и1/4. при у=0 => х=5/3=1и2/3. Мы знаем, что угловые коэффициенты параллельных прямых равны, тогда 3/4 - угловой коэффициент прямой, уравнение которой нам требуется составить. 1). По условию эта прямая проходит через точку О(0;0), следовательно, ее уравнение: (y-0)=(3/4)*(x-0) или y=(3/4)*x. 2). Прямая проходит через точку К(3;-2), следовательно, ее уравнение: (y-(-2))=(3/4)*(x-3) или y=(3/4)*x-9/4. Мы видим, что уравнения искомых прямых одинаковы. остается построить эти прямые.
найдите угол между прямыми AB1 и CD1
РЕШЕНИЕ
Углы между прямой AB1 и любой прямой параллельной прямой CD1 будут равны.
Грани CDD1A1 и AFF1A1 параллельны и являются квадратами. CD1 и AF1 диагонали
этих граней, которые лежат в плоскости ACD1F1.
Сделаем параллельный перенос CD1 в AF1 и найдем угол <B1AF1 равный искомому углу.
AB1 = AF1 - диагонали квадратов. По формуле Пифагора
AB1 = AF1 = √ 1² + 1² = √2
В правильном шестиугольнике A1B1C1D1E1F1 все углы 120 град, тогда
в треугольнике B1A1F1 <B1A1F1 = 120
По теореме косинусов
B1F1² = DB1² + DF1² - 2*DB1*DF1*cos120
все ребра равны 1
B1F1² = 1² + 1² - 2*1*1*cos120 = 3
По теореме косинусов
B1F1² = AB1² + AF1² - 2*AB1*AF1*cos<B1AF1
cos<B1AF1 = (AB1² + AF1² - B1F1²) / (2*AB1*AF1)
cos<B1AF1 = (√2² + √2² - 3) / (2*1*1) = 1/2 = cos 60
<B1AF1 = 60 град (или п/3)
ответ
60 град (или п/3)