Татьяна4437 11 месяцев назад 11 Сторона основания правильной четырехугольной пирамиды равна 30 см. Боковое ребро с плоскостью основания образует угол 30°. Вычислите высоту пирамиды. (ответ должен получиться с корнем) Знания Математика ответить Комментировать 1 ответ: andron46 [4] 11 месяцев назад 0 0 У правильной 4-угольной пирамиды в основании лежит квадрат. Найдём половину длины его диагонали: 1/2*√(30²+30²)=15*√2 Далее делаешь доп. построение: из вершины пирамиды проводишь перпендикуляр к основанию (длина этого перпендикуляра и есть искомая высота). Этот перпендикуляр попадёт в точку пересечения диагоналей квадрата, лежащего в основании. Рассматриваешь получившийся прямоугольный треугольник, (состоящий из бокового ребра, половины диагонали и построенного перпендикуляра): косинус 30°=√3/2 ⇒ боковая сторона равна 10*√6. Далее по теореме Пифагора: √((10*√6)²-(15*√2)²)=√(600-450)=√150=5*√6 ответ: 5*√6
Подробнее – на Otvet.Ws – https://otvet.ws/questions/5978459-storona-osnovaniya-pravilnoi-chetyrehugolnoi-piramidy-ravna-30.html
Точка разбиения О, ближайшая точка плоскости Z
1. M и N по одну сторону плоскости
1а.
MZ = 5 дм; NZ = 3 дм
MO = 3*ON
MN = 2 дм
MO + ON = 2
3*ON + ON = 2
4*ON = 2
ON = 0,5 дм
OZ = 3+0,5 = 3,5 дм
1б)
MZ = 5 дм; NZ = 3 дм
3*MO = ON
MN = 2 дм
MO + ON = 2
MO + 3*MO = 2
4*MO = 2
MO = 0,5 дм
OZ = 5-0,5 = 4,5 дм
2. M и N по разные стороны плоскости
2а.
MZ = 5 дм; NZ = 3 дм
MO = 3*ON
MN = 5+3 = 8 дм
MO + ON = 8
3*ON + ON = 8
4*ON = 8
ON = 2 дм
OZ = 3-2 = 1 дм
2б)
MZ = 5 дм; NZ = 3 дм
3*MO = ON
MN = 8 дм
MO + ON = 8
MO + 3*MO = 8
4*MO = 8
MO = 2 дм
OZ = 5-2 = 3 дм