Осевое сечение равностороннего конуса-равносторонний треугольник, а равностороннего цилиндра-квадрат. Обозначим радиус конуса R1, а радиус цилиндра R2. По известным формулам полная поверхность конуса S конуса полн.= S осн.+S бок.= пи*R1квадрат+ пи*R1*L=пи* R1квадрат+ пи*R1*2R1=3пи*R1квадрат. Где L=2R1 -образующая конуса. Аналогично -полная поверхность цилиндра Sцилиндра полн.= 2Sосн.+ Sбок.=2 пи*R2квадрат +2пи*R2*H=6пи*R2квадрат. Поскольку эти поверхности по условию равны, получим 3пи*R1квадрат=6пи*R2квадрат. Отсюда R1=(корень из2)*R2.
(Надо так повернуть одну из хорд вокруг центра окружности, чтобы две хорды стали параллельны. И сразу видно, что большая хорда стягивает большую дугу)
Поэтому угол треугольника, лежащий напротив большей стороны опирается на большую дугу. Остается вспомнить, как связаны вписанный угол и дуга, на которую он опирается.