Объяснение:
Обособленными членами предложения называются:
1) члены предложения, относящиеся к одному и тому же члену предложения, отвечающие на один вопрос, выполняющие одинаковую синтаксическую функцию; 2) члены предложения, выделяемые по смыслу и интонационно; 3) все члены предложения, кроме подлежащего и сказуемого.
Обособленные обстоятельства выражаются одиночными деепричастиями или деепричастными оборотами, сравнительными оборотами, существительными в косвенных падежах с предлогами. Обособленные уточняющие обстоятельства могут быть также выражены наречиями.
Дополнения в предложении могут обособляться, а могут не обособляться – в зависимости от того, что хотел передать автор.
Чаще всего обособляются обороты, которые условно называются дополнениями, выраженными существительными с предлогами «кроме», «вместо», «за исключением», «исключая», «помимо» и др. Такие дополнения имеют расширительное или, наоборот, ограничительное значение: Поездка ей в целом понравилась, за исключением этих двух происшествий.
Сравнительные обороты интонируются в речи, а на письме обособляются – выделяются запятыми. 1. Сравнительные обороты, начинающиеся сравнительными союзами (как, будто, словно, точно, чем, нежели, как будто и др.), выделяются (или отделяются) запятыми.
Сравнительный оборот, образующий именную часть составного сказуемого, или тесно связанный со ним по смыслу, не обособляется: Пьеса написана как комедия. ... Сравнительный оборот, представляющий собой устойчивое сочетание, не обособляется: После этих слов он вскочил как ужаленный.
1. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(22-2) = 180°*20 = 3600°.
ответ: 3600°.
2. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 25 см*8 см = 200 см^2.
ответ: 200 см^2.
3. Площадь трапеции равна произведению его высоты на полусумму оснований (по совместительству, длина средней линии равна полусумме оснований трапеции). 8 см*15 см = 120 см^2.
ответ: 120 см^2.
4. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(5-2) = 180°*3 = 540°.
ответ: 540°.
5. Вторая сторона прямоугольника равна 3 см (так как прямоугольный треугольник со сторонами 5 (см) и 4 (см) - египетский). 3 см*4 см = 12 см^2.
ответ: 12 см^2.
6. Если опустим на основание высоту (которая также является биссектрисой и медианой), она поделит основание на отрезки по 8 см каждые. Высота равна 6 см (опять же, заглянем в прямоугольный треугольник со сторонами 8 (см) и 10 (см) - египетский, поэтому, второй катет равен 6 см). Площадь каждого треугольника = 6 см*8 см/2 = 24 см^2, площадь всего равнобедренного треугольника = 24 см^2*2 = 48 cм^2.
ответ: 48 см^2.
7. Площадь прямоугольника равна произведению его смежных сторон. 4 см*8 см = 32 см^2.
ответ: 32 см^2.
8. Площадь прямоугольного треугольника равна половине произведения его катетов. 5 см*10 см/2 = 25 см^2.
ответ: 25 см^2.
9. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 6 см*8 см = 48 см^2.
ответ: 48 см^2.
10. Площадь трапеции равна произведению его высоты на полусумму оснований. Полусумма оснований - 16 см/2 = 8 см. 48 см^2 = 8 cм*h (высота) ⇒ h = 6 cм.
ответ: 6 см.